1、基础训练A组一、选择题1函数是上的偶函数,则的值是( )A B C. D.2将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的僻析式是( )A B C. D.3若点在第一象限,则在内的取值范围是( )A B.C. D.4若则( )A B C D5函数的最小正周期是( )A B C D6在函数、中,最小正周期为的函数的个数为( )A个 B个 C个 D个二、填空题1关于的函数有以下命题: 对任意,都是非奇非偶函数;不存在,使既是奇函数,又是偶函数;存在,使是偶函数;对任意,都不是奇函数.其中一个假命题的序号是 ,因为当 时,该命题的结论不成立
2、.2函数的最大值为_.3若函数的最小正周期满足,则自然数的值为_.4满足的的集合为_。5若在区间上的最大值是,则=_。三、解答题1画出函数的图象。2比较大小(1);(2)3(1)求函数的定义域。(2)设,求的最大值与最小值。4若有最大值和最小值,求实数的值。新课程高中数学训练题组(数学4必修)第一章 三角函数(下) 综合训练B组一、选择题1方程的解的个数是( )A. B. C. D.2在内,使成立的取值范围为( )A B C D 3已知函数的图象关于直线对称,则可能是( )A. B. C. D.4已知是锐角三角形,则( )A. B. C. D.与的大小不能确定5如果函数的最小正周期是,且当时取
3、得最大值,那么( )A. B. C. D.6的值域是( )A B C D 二、填空题1已知是第二、三象限的角,则的取值范围_。2函数的定义域为,则函数的定义域为_.3函数的单调递增区间是_.4设,若函数在上单调递增,则的取值范围是_。5函数的定义域为_。三、解答题1(1)求函数的定义域。 (2)设,求的最大值与最小值。2比较大小(1);(2)。3判断函数的奇偶性。4设关于的函数的最小值为,试确定满足的的值,并对此时的值求的最大值。 新课程高中数学训练题组(数学4必修)第一章 三角函数(下) 提高训练C组一、选择题1函数的定义城是( )A. B.C. D.2已知函数对任意都有则等于( )A. 或
4、 B. 或 C. D. 或3设是定义域为,最小正周期为的函数,若则等于( )A. B. C. D.4已知, ,为凸多边形的内角,且,则这个多边形是( )A正六边形 B梯形 C矩形 D含锐角菱形5函数的最小值为( )A B C D6曲线在区间上截直线及所得的弦长相等且不为,则下列对的描述正确的是( )A. B. C. D.二、填空题1已知函数的最大值为,最小值为,则函数的最小正周期为_,值域为_.2当时,函数的最小值是_,最大值是_。3函数在上的单调减区间为_。4若函数,且则_。5已知函数的图象上的每一点的纵坐标扩大到原来的倍,横坐标扩大到原来的倍,然后把所得的图象沿轴向左平移,这样得到的曲线和
5、的图象相同,则已知函数的解析式为_.三、解答题1求使函数是奇函数。2已知函数有最大值,试求实数的值。3求函数的最大值和最小值。 4已知定义在区间上的函数的图象关于直线对称,xyo-1当时,函数,其图象如图所示.(1)求函数在的表达式;(2)求方程的解. 基础训练A组一、选择题 1.C 当时,而是偶函数2.C 3.B 4.D 5.D 6.C 由的图象知,它是非周期函数二、填空题 1. 此时为偶函数2. 3. 4.5. 三、解答题1.解:将函数的图象关于轴对称,得函数的图象,再将函数的图象向上平移一个单位即可。2.解:(1)(2)3.解:(1) 或 为所求。 (2),而是的递增区间 当时,; 当时
6、,。4.解:令,对称轴为当时,是函数的递减区间,得,与矛盾;当时,是函数的递增区间,得,与矛盾;当时,再当,得;当,得 数学4(必修)第一章 三角函数(下) 综合训练B组一、选择题 1.C 在同一坐标系中分别作出函数的图象,左边三个交点,右边三个交点,再加上原点,共计个2.C 在同一坐标系中分别作出函数的图象,观察:刚刚开始即时,;到了中间即时,;最后阶段即时,3.C 对称轴经过最高点或最低点,4.B 5.A 可以等于6.D 二、填空题1. 2. 3. 函数递减时,4. 令则是函数的关于原点对称的递增区间中范围最大的,即,则5 三、解答题1.解:(1) 得,或 (2),而是的递减区间 当时,;
7、 当时,。2.解:(1);(2)3.解:当时,有意义;而当时,无意义, 为非奇非偶函数。4.解:令,则,对称轴, 当,即时,是函数的递增区间,;当,即时,是函数的递减区间, 得,与矛盾;当,即时, 得或,此时。数学4(必修)第一章 三角函数(下) 提高训练C组一、选择题 1.D 2.B 对称轴3.B 4.C 5.B 令,则,对称轴, 是函数的递增区间,当时;6.A 图象的上下部分的分界线为二、填空题1. 2. 当时,;当时,;3. 令,必须找的增区间,画出的图象即可4. 显然,令为奇函数 5 三、解答题1.解:,为奇函数,则。2.解:,对称轴为,当,即时,是函数的递减区间,得与矛盾;当,即时,是函数的递增区间,得;当,即时,得; 3.解:令得,对称轴,当时,;当时,。4.解:(1),且过,则当时,而函数的图象关于直线对称,则即,(2)当时, 当时, 为所求。