2017年秋期高中二年级期中质量评估数学试题(文)参考答案一、选择题:16 CCABAD 712 BBBBDC 二、填空题:13、 5 14、58 15、 16、 三、解答题:17解(1)由已知的解集是, 所以是方程的两个根, 由韦达定理知, . 5分(2)对任意不等式恒成立等价于对恒成立即对恒成立因为,所以只需所以所以的取值范围是 10分18、(1)由正弦定理,得, 因为,解得, 6分(2)因为 由余弦定理,得,解得 的面积 12分19、 设污水处理水池的长、宽分别为,总造价为y元,则, 6分,易知函数是减函数,所以当时总造价最低。 10分最低造价为45000元。 12分20、(), 即,数列是等差数列 3分由上知数列是以2为公差的等差数列,首项为, , 5分 (或由得)由题知,综上, 8分()由()知, , 12分21、(1)在ABC中, 2分 因为,所以,所以, 4分因为,所以,因为,所以 6分(2) 9分因为,所以,故,因此,所以 12分 22、(1)由题意知,当时, 当时,符合上式 所以 3分 设数列的公差为 由即 可解得 所以 6分 (2)由(1)知另 8分 又,得两式作差得所以 12分