ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:969KB ,
资源ID:1199133      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1199133-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021版高考数学(人教A版理科)一轮复习攻略核心素养测评 五十六 曲线与方程 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021版高考数学(人教A版理科)一轮复习攻略核心素养测评 五十六 曲线与方程 WORD版含解析.doc

1、温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。核心素养测评 五十六曲线与方程(30分钟60分)一、选择题(每小题5分,共25分)1.方程(x2+y2-4)=0表示的曲线形状是()【解析】选C.原方程化为或x+y+1=0,显然方程表示直线x+y+1=0和圆x2+y2=4在直线x+y+1=0的右上方的部分.2.在平面直角坐标系中,已知两点A(3,1),B(-1,3),若点C满足=1+2(O为原点),其中1,2R,且1+2=1,则点C的轨迹是()A.直线B.椭圆C.圆D.双曲线【解析】选A.设C(x,y),则=(x,y),

2、=(3,1),=(-1,3),因为=1+2,所以又因为1+2=1,所以化简得x+2y-5=0表示一条直线.3.设过点P(x,y)的直线分别与x轴的正半轴和y轴的正半轴交于A,B两点,点Q与点P关于y轴对称,O为坐标原点.若=2,且=1,则点P的轨迹方程是()A.x2+3y2=1(x0,y0)B.x2-3y2=1(x0,y0)C.3x2-y2=1(x0,y0)D.3x2+y2=1(x0,y0)【解析】选A.设A(a,0),B(0,b),a0,b0,由=2,得(x,y-b)=2(a-x,-y),所以即a=x0,b=3y0;由题意得点Q(-x,y),故由=1得(-x,y)(-a,b)=1即ax+by

3、=1;将a,b代入ax+by=1得所求的轨迹方程为x2+3y2=1(x0,y0).4.在ABC中,B(-2,0),C(2,0),A(x,y),给出ABC满足的条件,就能得到动点A的轨迹方程.如表给出了一些条件及方程:条件方程ABC周长为10C1:y2=25ABC面积为10C2:x2+y2=4(y0)ABC中,A=90C3:+=1(y0)则满足条件,的轨迹方程依次为()A.C3,C1,C2B.C1,C2,C3C.C3,C2,C1D.C1,C3,C2【解析】选A.ABC的周长为10,即|AB|+|AC|+|BC|=10,又|BC|=4,所以|AB|+|AC|=6|BC|,此时动点A的轨迹为椭圆,与

4、C3对应;ABC的面积为10,所以|BC|y|=10即|y|=5与C1对应;因为A=90,所以=(-2-x,-y)(2-x,-y)=x2+y2-4=0与C2对应.5.给出下列说法:方程x2+y2-2x+4y+6=0表示一个圆;若mn0,则方程mx2+ny2=1表示焦点在y轴上的椭圆;已知点M(-1,0)、N(1,0),若|PM|-|PN|=2,则动点P的轨迹是双曲线的右支;以过抛物线焦点的弦为直径的圆与该抛物线的准线相切.其中正确说法的个数是()A.1B.2C.3D.4【解析】选B.根据题意,依次分析4个说法:对于,方程x2+y2-2x+4y+6=0变形可得(x-1)2+(y+2)2=-1,不

5、是圆的方程,错误;对于,方程mx2+ny2=1变形可得+=1,若mn0,则有0,则方程mx2+ny2=1表示焦点在y轴上的椭圆;正确;对于,点M(-1,0)、N(1,0),则|MN|=2,若|PM|-|PN|=2,则动点P的轨迹是一条射线;错误;对于,由抛物线的定义,以过抛物线焦点的弦为直径的圆与该抛物线的准线相切,正确.二、填空题(每小题5分,共15分)6.由动点P向圆x2+y2=1引两条切线PA,PB,切点分别为A、B,APB=60,则动点P 的轨迹方程为_.【解析】设P(x,y),x2+y2=1的圆心为O,因为APB=60,OP平分APB,所以OPB=30,因为|OB|=1,OBP为直角

6、,所以|OP|=2,所以x2+y2=4.答案:x2+y2=47.在平面直角坐标系中,动点P和点M(-2,0),N(2,0)满足|+=0,则动点P(x,y)的轨迹方程为_.【解析】把已知等式|+=0用坐标表示,得4+4(x-2)=0,化简变形得y2=-8x.答案:y2=-8x8.若直线y=k(x+2)+4与曲线y=有两个交点,则实数k的取值范围是_.【解析】直线y=k(x+2)+4,当x=-2时,y=4,可得此直线恒过A(-2,4),曲线y=为圆心在坐标原点,半径为2的半圆,根据题意作出相应的图形,如图所示:当直线y=k(x+2)+4与半圆相切(切点在第一象限)时,圆心到直线的距离d=r,所以=

7、2,即4k2+16k+16=4+4k2,解得:k=-,当直线y=k(x+2)+4过点C时,将x=2,y=0代入直线方程得:4k+4=0,解得:k=-1,则直线与曲线有2个交点时k的取值范围为.答案:三、解答题(每小题10分,共20分)9.设mR,在平面直角坐标系中,已知向量a=(mx,y+1),向量b=(x,y-1),ab,动点M(x,y)的轨迹为E.(1)求轨迹E的方程,并说明该方程所表示曲线的形状.(2)当m=时,轨迹E与直线y=x-1交于A、B两点,求弦AB的长.【解析】(1)因为a=(mx,y+1),b=(x,y-1),且ab,所以ab=mx2+y2-1=0,即mx2+y2=1.当m=

8、0时,方程表示两条直线,方程为y=1;当m=1时,方程表示的是圆x2+y2=1;当m0且m1时,方程表示的是椭圆;当m0,可得-t0得k2,所以0x,所以顶点E的轨迹方程为x2+4y2-6x=0.5.(10分)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足= .(1)求点P的轨迹方程;(2)设点Q在直线x=-3上,且=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.【解析】(1)设P(x,y),M(x0,y0),则N(x0,0),=(x-x0,y),=(0,y0).由= ,得x0=x,y0=y.因为M(x0,y0)在椭圆C上,所以+=1.因此点P的轨迹方

9、程为x2+y2=2.(2)由题意知F(-1,0).设Q(-3,t),P(m,n),则=(-3,t),=(-1-m,-n),=3+3m-tn,=(m,n),=(-3-m,t-n).由=1,得-3m-m2+tn-n2=1,又由(1)知m2+n2=2,故3+3m-tn=0.所以=0,即.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.【拓广探索练】1.方程(x2-y2-1)=0表示的曲线的大致形状是(图中实线部分)()【解析】选B.原方程等价于 或x-y-1=0,前者表示等轴双曲线x2-y2=1位于直线x-y-1=0下方的部分,后者为直线x-y-1=0,这两部分合起来即为所求B.2.方程|y|-1=所表示的曲线的长度是()A.6B.2C.2+4D.6+12【解析】选B.方程|y|-1=,可得|y|-10,即有y1或y-1,即有(x-2)2+(|y|-1)2=3,作出方程|y|-1=所表示的曲线,如图可得曲线为两个半圆,半径均为,可得表示曲线的长度为2.关闭Word文档返回原板块

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3