1、课下能力提升(二)学业水平达标练题组1用22列联表分析两分类变量间的关系1分类变量X和Y的列联表如下:y1y2总计x1ababx2cdcd总计acbdabcd则下列说法正确的是()Aadbc越小,说明X与Y关系越弱Badbc越大,说明X与Y关系越强C(adbc)2越大,说明X与Y关系越强D(adbc)2越接近于0,说明X与Y关系越强解析:选C|adbc|越小,说明X与Y关系越弱,|adbc|越大,说明X与Y关系越强2假设有两个变量X与Y,它们的取值分别为x1,x2和y1,y2,其列联表为:y1y2总计x1ababx2cdcd总计acbdabcd以下各组数据中,对于同一样本能说明X与Y有关系的可
2、能性最大的一组为()Aa50,b40,c30,d20Ba50,b30,c40,d20Ca20,b30,c40,d50Da20,b30,c50,d40解析:选D当(adbc)2的值越大,随机变量K2的值越大,可知X与Y有关系的可能性就越大显然选项D中,(adbc)2的值最大3某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:文艺节目新闻节目总计20至40岁401858大于40岁152742总计5545100由表中数据直观分析,收看新闻节目的观众是否与年龄有关:_(填“是”或“否”)解析:因为在20至40岁的58名观众中有18名观众收看新闻节
3、目,而大于40岁的42名观众中有27名观众收看新闻节目,即,两者相差较大,所以经直观分析,收看新闻节目的观众与年龄是有关的答案:是题组2用等高条形图分析两分类变量间的关系4如图是调查某地区男女中学生喜欢理科的等高条形图,阴影部分表示喜欢理科的百分比,从图中可以看出()A性别与喜欢理科无关B女生中喜欢理科的百分比为80%C男生比女生喜欢理科的可能性大些D男生不喜欢理科的比为60%解析:选C从图中可以分析,男生喜欢理科的可能性比女生大一些5观察下列各图,其中两个分类变量x,y之间关系最强的是()解析:选D在四幅图中,D图中两个深色条的高相差最明显,说明两个分类变量之间关系最强6为了研究子女吸烟与父
4、母吸烟的关系,调查了一千多名青少年及其家长,数据如下:父母吸烟父母不吸烟总计子女吸烟23783320子女不吸烟6785221 200总计9156051 520利用等高条形图判断父母吸烟对子女吸烟是否有影响?解:等高条形图如图所示:由图形观察可以看出父母吸烟者中子女吸烟的比例要比父母不吸烟者中子女吸烟的比例高,因此可以在某种程度上认为“子女吸烟与父母吸烟有关系”题组3独立性检验7对于分类变量X与Y的随机变量K2的观测值k,下列说法正确的是()Ak越大,“X与Y有关系”的可信程度越小Bk越小,“X与Y有关系”的可信程度越小Ck越接近于0,“X与Y没有关系”的可信程度越小Dk越大,“X与Y没有关系”
5、的可信程度越大解析:选Bk越大,“X与Y没有关系”的可信程度越小,则“X与Y有关系”的可信程度越大,即k越小,“X与Y有关系”的可信程度越小8某同学寒假期间对其30位亲属的饮食习惯进行了一次调查,列出了如下22列联表:偏爱蔬菜偏爱肉类合计50岁以下481250岁以上16218合计201030则可以说其亲属的饮食习惯与年龄有关的把握为()A90%B95%C99% D99.9%附:P(K2k)0.0500.0100.001k3.8416.63510.828解析:选C因为K2106.635,所以有99%的把握认为其亲属的饮食习惯与年龄有关9为了检验某套眼保健操预防学生近视的作用,把500名做该套眼保
6、健操的学生与另外500名未做该套眼保健操的学生的视力情况作记录并比较,提出假设H0:“这套眼保健操不能起到预防近视的作用”,利用22列联表计算所得的K23.918.经查对临界值表知P(K23.841)0.05.对此,四名同学得出了以下结论:有95%的把握认为“这套眼保健操能起到预防近视的作用”;若某人未做该套眼保健操,那么他有95%的可能近视;这套眼保健操预防近视的有效率为95%;这套眼保健操预防近视的有效率为5%.其中所有正确结论的序号是_解析:根据查对临界值表知P(K23.841)0.05,故有95%的把握认为“这套眼保健操能起到预防近视的作用”,即正确;95%仅指“这套眼保健操能起到预防
7、近视的作用”的可信程度,所以错误答案:10为了解决高二年级统计案例入门难的问题,某校在高一年级的数学教学中设有试验班,着重加强统计思想的渗透,下面是高二年级统计案例的测验成绩统计表(单位:分)的一部分,试分析试验效果.70及70分以下70分以上总计对照班321850试验班123850总计4456100附:P(K2k0)0.0250.0100.005k05.0246.6357.879解:根据列联表中的数据,由公式得K2的观测值k16.234.因为16.2346.635,所以,在犯错误的概率不超过0.01的前提下认为高二年级统计案例的测试成绩与高一年级数学教学中增加统计思想的渗透有联系能力提升综合
8、练1利用独立性检验对两个分类变量是否有关系进行研究时,若有99.5%的把握认为事件A和B有关系,则具体计算出的数据应该是()Ak6.635 Bk6.635Ck7.879 DkKKK,所以阅读量与性别有关联的可能性最大4下列关于K2的说法中,正确的有_K2的值越大,两个分类变量的相关性越大;K2的计算公式是K2;若求出K243.841,则有95%的把握认为两个分类变量有关系,即有5%的可能性使得“两个分类变量有关系”的推断出现错误;独立性检验就是选取一个假设H0条件下的小概率事件,若在一次试验中该事件发生了,这是与实际推断相抵触的“不合理”现象,则作出拒绝H0的推断解析:对于,K2的值越大,只能
9、说明我们有更大的把握认为二者有关系,却不能判断相关性大小,故错;对于,(adbc)应为(adbc)2,故错;对答案:5某班主任对全班50名学生作了一次调查,所得数据如表:认为作业多认为作业不多总计喜欢玩电脑游戏18927不喜欢玩电脑游戏81523总计262450由表中数据计算得到K2的观测值k5.059,于是_(填“能”或“不能”)在犯错误的概率不超过0.01的前提下认为喜欢玩电脑游戏与认为作业多有关解析:查表知若要在犯错误的概率不超过0.01的前提下认为喜欢玩电脑游戏与认为作业多有关,则临界值k06.635,本题中,k5.0597.879,因此有99.5%的把握认为患肝病与常饮酒有关(2)设
10、常饮酒且患肝病的男性为A,B,C,D,女性为E,F,则任取两人有AB,AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,CF,DE,DF,EF,共15种其中一男一女有AE,AF,BE,BF,CE,CF,DE,DF,共8种故抽出一男一女的概率是P.7某食品厂为了检查甲乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取40件产品作为样本称出它们的质量(单位:克),质量值落在(495,510的产品为合格品,否则为不合格品表1是甲流水线样本频数分布表,图1是乙流水线样本频率分布直方图表1甲流水线样本频数分布表产品质量/克频数(490,4956(495,5008(500,50514(5
11、05,5108(510,5154(1)根据上表数据作出甲流水线样本频率分布直方图;(2)若以频率作为概率,试估计从两条流水线分别任取1件产品,该产品恰好是合格品的概率分别是多少;(3)由以上统计数据作出22列联表,并回答在犯错误的概率不超过多少的前提下认为“产品的包装质量与两条要自动包装流水线的选择有关”解:(1)甲流水线样本频率分布直方图如下:(2)由表1知甲样本合格品数为814830,由图1知乙样本中合格品数为(0.060.090.03)54036,故甲样本合格品的频率为0.75,乙样本合格品的频率为0.9,据此可估计从甲流水线任取1件产品,该产品恰好是合格品的概率为0.75.从乙流水线任取1件产品,该产品恰好是合格品的概率为0.9.(3)22列联表如下:甲流水线乙流水线总计合格品a30b3666不合格品c10d414总计4040n80因为K2的观测值k3.1172.706,所以在犯错误的概率不超过0.1的前提下认为产品的包装质量与两条自动包装流水线的选择有关