ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:2.79MB ,
资源ID:1189193      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1189193-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021版高考数学一轮复习 核心素养测评十六 导数与不等式的综合问题 理 北师大版.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021版高考数学一轮复习 核心素养测评十六 导数与不等式的综合问题 理 北师大版.doc

1、核心素养测评十六 导数与不等式的综合问题(30分钟60分)一、选择题(每小题5分,共20分)1.对于x0,+),则ex与1+x的大小关系为()A.ex1+xB.ex1+xC.ex=1+xD.ex与1+x大小关系不确定【解析】选A.令f(x)=ex-(1+x),因为f(x)=ex-1,所以对x0,+),f(x)0,故f(x)在0,+)上递增,故f(x)f(0)=0,即ex1+x.2.(2020长沙模拟)已知函数f(x)=-x3-3x+2sin x,设a=20.3,b=0.32,c=log20.3,则()A.f(b)f(a)f(c)B.f(b)f(c)f(a)C.f(c)f(b)f(a)D.f(a

2、)f(b)f(c)【解析】选D.根据函数性质可得120.32;00.321;-2log20.3-1;故可判断出cba.又f(x)=-3x2-3+2cos x,其中-3x2-3-3恒成立,而cos x-1,1也是恒成立,故f(x)0恒成立,即函数f(x)是单调递减的,由cbf(b)f(a).3.已知x=1是函数f(x)=ax3-bx-ln x(a0,bR)的一个极值点,则ln a与b-1的大小关系是()A.ln ab-1B.ln a0),则g=-3=,令g0,解得0a,令g,故g(a)在上单调递增,在上单调递减,故g(a)max=g=1-ln 30,故ln a0,则f(t)=-ln t+-1,令

3、g(t)=-ln t+-1,t0,则g(t)=-f(x+1)成立的x的取值范围是_.【解析】根据题意,函数f(x)=ex+e-x+x2,则f(-x)=e-x+ex+(-x)2=ex+e-x+x2=f(x),即函数f(x)为偶函数,又f(x)=(ex)+(x2)=ex-e-x+2x.当x0时,有f(x)0,即函数f(x)在0,+)上为增函数,f(2x)f(x+1)f(|2x|)f(|x+1|)|2x|x+1|,解得x1,即x的取值范围为(1,+).答案:(1,+)6.(2020汉中模拟)设函数f(x)=ex-(e为自然对数的底数),若不等式f(x)0有正实数解,则实数a的最小值为_.【解析】原问

4、题等价于存在x(0,+),使得aex(x2-3x+3),令g(x)=ex(x2-3x+3),x(0,+),则ag(x)min.而g(x)=ex(x2-x),由g(x)0可得 x(1,+),由g(x)0,函数f(x)=x+,g(x)=x-ln x,若对任意的x1,x21,e,都有f(x1)g(x2)成立,则实数a的取值范围为_.【解析】因为g(x)=x-ln x,x1,e,所以有g(x)=1-0,函数g(x)单调递增,则g(x)max=g(e)=e-1.因为f(x)=x+,所以f(x)=.令f(x)=0,因为a0,所以x=a.当0aa.当1ae时,f(x)min=f(a)=2ae-1恒成立.当a

5、e时,f(x)在1,e上单调递减,f(x)min=f(e)=e-1恒成立.综上,a.答案:,+)8.已知不等式ex-1kx+ln x,对于任意的x(0,+)恒成立,则k的最大值为_.【解题指南】不等式ex-1kx+ln x,对于任意的x(0,+)恒成立,等价于k对于任意的x(0,+)恒成立.求得f(x)=(x0)的最小值即可得到k的取值.【解析】不等式ex-1kx+ln x,对于任意的x(0,+)恒成立,等价于k对于任意的x(0,+)恒成立.令f(x)=(x0),f(x)=,令g(x)=ex(x-1)+ln x(x0),则g(x)=xex+0,所以g(x)在(0,+)上单调递增,g(1)=0,

6、所以x(0,1)时,g(x)0.所以x(0,1)时,f(x)0.所以x(0,1)时,f(x)单调递减,x(1,+)时,f(x)单调递增,所以f(x)min=f(1)=e-1,所以ke-1.答案:e-1三、解答题(每小题10分,共20分)9.(2020邯郸模拟)已知函数f(x)=ln x-ax.(1)当a=1时,判断函数f(x)的单调性.(2)若f(x)0恒成立,求a的取值范围.(3)已知bae,证明abba.【解析】由题意可知,函数f(x)=ln x-ax的定义域为(0,+)且f(x)=-a.(1)当a=1时,f(x)=-1=,若f(x)0,则0x1;若f(x)1,所以函数f(x)在区间(0,

7、1)上单调递增,(1,+)上单调递减.(2)若f(x)0恒成立,则ln x-ax0恒成立,又因为x(0,+),所以分离变量得a恒成立,设g(x)=,则ag(x)max,所以g(x)=,当g(x)0时,x(0,e),即函数g(x)=在(0,e)上单调递增,在(e,+)上单调递减.当x=e时,函数g(x)=取最大值,g(x)max=g(e)=,所以a.(3)欲证abba,两边取对数,只需证明ln abln ba,即证bln aaln b,即证,由(2)可知g(x)=在(e,+)上单调递减,且bae,所以g(a)g(b),命题得证.10.(2020汉中模拟)已知函数f(x)=ln x+x2-(m+1

8、)x+m+.(1)设x=2是函数f(x)的极值点,求m的值,并求f(x)的单调区间.(2)若对任意的x(1,+),f(x)0恒成立,求m的取值范围.【解析】(1)f(x)=ln x+x2-(m+1)x+m+(x0),f(x)=x+-m-1.因为x=2是函数f(x)的极值点,所以f(2)=2+-m-1=0,故m=.令f(x)=x+-=0,解得0x2.令f(x)0,则x0,则f(x)在(1,+)上单调递增,又f(1)=0,所以ln x+x2-(m+1)x+m+0恒成立;当 m1时,易知f(x)=x+-m-1在(1,+)上单调递增,故存在x0(1,+),使得f(x0)=0,所以f(x)在(1,x0)上单调递减,在(x0,+)上单调递增,又f(1)=0,则f(x0)0恒成立矛盾.综上,m1.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3