ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:3.38MB ,
资源ID:1189183      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1189183-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021版高考数学一轮复习 核心素养测评十八 导数的存在性问题 理 北师大版.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021版高考数学一轮复习 核心素养测评十八 导数的存在性问题 理 北师大版.doc

1、核心素养测评十八 导数的存在性问题(30分钟60分)一、选择题(每小题5分,共20分)1.若存在正实数x使ex(x2-a)1成立,则实数a的取值范围是()A.(-1,+)B.(0,+)C.(-2,+)D.-1,+)【解析】选A.存在正实数x使ex(x2-a)x2-在区间(0,+)上有解,令f(x)=x2-,f(x)=2x+0,所以f(x)在区间(0,+)上单调递增,所以f(x)f(0)=-1,又ax2-在区间(0,+)上有解,所以a(-1,+).2.(2019莆田模拟)若函数f(x)=x3-x2+2x没有极小值点,则a的取值范围是()A.B.C.0D.0【解析】选C.f(x)=ax2-2x+2

2、,要使得f(x)没有极小值,则要求f(x)恒大于等于0,或者恒小于等于0,或者该导函数为一次函数,当该导函数为一次函数的时候,a=0,满足条件,当f(x)恒大于等于0的时候,则,解得a,当f(x)恒小于等于0的时候,则,此时a不存在,故a0.3.已知函数f(x)=e2x,g(x)=ln x+,对aR,b(0,+),f(a)=g(b),则b-a的最小值为()A.-1B.1-C.2-1D.1+【解析】选D.设f(a)=g(b)=t,t(0,+),可得a=,b=,令h(t)=b-a=-,t(0,+),则 h(t)=-,令h(t)=0,得t=,由于h(t)=-是增函数,所以t时,h(t)0,因此h(t

3、)在上单调递减,在上单调递增,从而h(t)的最小值为h=1+.4.(2020重庆模拟)若函数f(x)=ex在(0,1)内存在极值点,则实数a的取值范围是()A.(-,0)B.(0,+)C.(-,-1 D.-1,0)【解析】选A.函数f(x)=ex,定义域为x|x0,f(x)=ex+xex-=,因为f(x)在(0,1)内存在极值点,则f(x)=0的实数根在(0,1)内,即x3+x2-ax+a=0的实数根在区间(0,1)内,令g(x)=x3+x2-ax+a,可知,函数g(x)=x3+x2-ax+a在(0,1)内存在零点,讨论a:a=0时,g(x)=x2(x+1)在(0,1)上无零点.a0时,在(0

4、,1)上,g(x)=x3+x2+(1-x)a0,无零点.a0时,g(0)=a0,在(0,1)上有零点.所以实数a的取值范围是a0时,令f(x)=0,得x=ln,函数f(x)在上单调递减,在上单调递增,所以f(x)的最小值为f=1-ln-2a=1+ln a-2a.令g(a)=1+ln a-2a(a0),则g(a)=-2.当a时,g(a)单调递增;当a时,g(a)单调递减,所以g(a)max=g=-ln 20,所以f(x)的最小值为f0,得x2;F(x)0,得0x2,所以F(x)在1,2上递减,在2,3上递增,F(1)=3,F(2)=3-ln 2,F(3)=-ln 3.作出函数F(x)图像,如图.

5、作直线y=m,平移可知当3-ln 20,所以f(x)在上单调递增,因为a,b,所以f(x)在a,b上单调递增,因为f(x)在a,b上的值域为k(a+2),k(b+2),所以,所以方程f(x)=k(x+2)在上有两解a,b.作出y=f(x)与直线y=k(x+2)的函数图像,则两图像有两交点.若直线y=k(x+2)过点,则k=,若直线y=k(x+2)与y=f(x)的图像相切,设切点为(x0, y0),则,解得k=1.所以10,解得:x2,令f(x)0,解得:x2,所以f(x)在上单调递减,在(2,3上单调递增, 所以f=8.5是函数的最大值, 当x22,3时,g(x)=2x+a为增函数, 所以g(

6、3)=a+8是函数的最大值, 又因为x1,x22,3,使得f(x1)g(x2), 可得f(x)在x1的最大值不小于g(x)在x22,3的最大值, 即8.5a+8,解得:a.答案:a三、解答题(每小题10分,共20分)9.(2020黄冈模拟)已知函数f(x)=ex(a+ln x),其中aR.(1)若曲线y=f(x)在x=1处的切线与直线y=-垂直,求a的值.(2)记f(x)的导函数为g(x).当a(0,ln 2)时,证明:g(x)存在极小值点x0,且f(x0)0,所以g(x)与a+-+ln x同号.设h(x)=a+-+ln x,则h(x)=.所以对任意x(0,+),有h(x)0,故h(x)在(0

7、,+)上单调递增.因为a(0,ln 2),所以h(1)=a+10,h=a+ln 0,故存在x0,使得h(x0)=0.g(x)与g(x)在区间上的情况如下:xx0(x0,1)g(x)-0+g(x)极小值所以g(x)在区间上单调递减,在区间(x0,1)上单调递增.所以若a(0,ln 2),存在x0,使得x0是g(x)的极小值点.令h(x0)=0,得到a+ln x0=,所以f(x0)=(a+ln x0)=0,令f(x)=0,得x=,所以当x(0,)时,有f(x)0,则(,+)是函数f(x)的单调递增区间.当x(1,e)时,函数f(x)在(1,)上单调递减,在(,e)上单调递增;又因为f(1)=,f(

8、e)=e2-30,f()=(1-ln 3)0,bR).(1)若存在正数a,使f(x)0恒成立,求实数b的最大值.(2)设a=1,若g(x)=xex-2x-f(x)没有零点,求实数b的取值范围.【解析】(1)因为f(x)=ln x-ax+ab,所以f(x)=-a=-,所以y=f(x)在上单调递增,在上单调递减.所以f(x)max=f=-ln a-1+ab.所以存在正数a,使ab1+ln a成立,即存在正数a,使得b成立.令h(x)=,x(0,+),因为h(x)=-,所以y=h(x)在(0,1)上单调递增,在(1,+)上单调递减.所以h(x)max=h(1)=1,所以b1.故b的最大值为1.(2)

9、因为a=1,所以f(x)=ln x-x+b.所以g(x)=xex-x-ln x-b.所以g(x)=(x+1).令x0(0,1),使得=.两边取自然对数,得x0=-ln x0,所以g(x)在(0,x0)上单调递减,在(x0,+)上单调递增.由题设可知,要使函数g(x) 没有零点,则要g(x)min=g(x0)0即可,g(x0)=x0-x0+x0-b=1-b0,所以b0恒成立,又由g(x)=2e2x-aex-a2=,若a=0,则g(x)=e2x0,g(x)无零点,f(x)无好点.若a0,由g(x)=0,得x=ln a.当x(-,ln a)时,g(x)0,所以g(x)在(-,ln a)上单调递减,在上单调递增.所以当x=ln a时,g(x)取最小值g(ln a)=-a2ln a.当且仅当-a2ln a0,即0a0,所以g(x)无零点,f(x)无好点.若a0,由g(x)=0,得x=ln.当x时,g(x)0,所以g(x)在上单调递减,在上单调递增.所以当x=ln时,g(x)取最小值g=a2.当且仅当a20,即-2a0,所以g(x)无零点,f(x)无好点.综上,a的取值范围为.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3