1、昌吉市第一中学教育共同体高二数学试卷题号一二三总分得分一、选择题(本大题共10小题,共50.0分)1. 设集合A=1,2,3,B=2,3,4,则AB=()A. 1,2,3,4B. 1,2,3C. 2,3,4D. 1,3,42. 复平面内表示复数z=i(-2+i)的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 代数式sin(+)+cos(-)的值为()A. -1B. 0C. 1D. 4. 已知sin=,并且是第二象限的角,那么tan的值等于()A. -B. -C.D. 5. 在ABC中,角A,B,C所对的边分别为a,b,c,若a=7,b=5,c=8,则ABC的面积S等于
2、()A. 10B. 10C. 20D. 206. 若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法计算,其参考数据如下: f(1)=-2f(1.5)=0.625f(1.25)=-0.984f(1.375)=-0.260f(1.4375)=0.162f(1.40625)=-0.054那么方程x3+x2-2x-2=0的一个近似根(精确度为0.05)可以是()A. 1.25B. 1.375C. 1.42D. 1.57. 下列函数中,既是偶函数又是(0,+)上的增函数的是()A. y=-x3B. y=2|x|C. y=D. y=log3(-x)8. 已知p,q是简单命题,那么“p
3、q是真命题”是“p是真命题”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件9. 设f(x)是函数f(x)的导函数,y=f(x)的图象如图所示,则y=f(x)的图象最有可能的是()A. B. C. D. 10. 已知a=log23,b=log3,c=,则()A. cbaB. cabC. abcD. acb二、填空题(本大题共4小题,共20.0分)11. 若集合A=x|-2x1,B=x|0x2则集合AB= _ 12. 复数z=(1+2i)(3-i),其中i为虚数单位,则z的实部是_ 13. 关于函数f(x)=4sin(2x+),(xR)有下列结论:y=f(x
4、)是以为最小正周期的周期函数;y=f(x)可改写为y=4cos(2x-);y=f(x)的最大值为4;y=f(x)的图象关于直线x=对称;则其中正确结论的序号为_ 14. 如图函数f(x)的图象在点P处的切线为:y=-2x+5,则f(2)+f(2)=_三、解答题(本大题共5小题,共50.0分)15. 设命题p:实数x满足(x-a)(x-3a)0,其中a0,命题q:实数x满足(1)若a=1,且pq为真,求实数x的取值范围;(2)若p是q的充分不必要条件,求实数a的取值范围16. 已知tan =2(1)求tan(+)的值;(2)求的值17. 已知曲线C:y=x2(x0),直线l为曲线C在点A(1,1
5、)处的切线()求直线l的方程;()求直线l与曲线C以及x轴所围成的图形的面积18. 已知f(x)=2sin(2x-)()求函数f(x)的单调递增区间与对称轴方程;()当x0,时,求f(x)的最大值与最小值19. 已知函数f(x)=xlnx(1)求f(x)在,3上的最大值与最小值;(2)求证:f(x)-(x+1)2-3x-1昌吉市第一中学教育共同体高二数学试卷【答案】1. A2. C3. C4. A5. B6. C7. B8. D9. C10. D11. x|0x112. 513. 14. -115. 解:由(x-a)(x-3a)0,其中a0,得ax3a,a0,则p:ax3a,a0由解得2x3即
6、q:2x3(1)若a=1,则p:1x3,若pq为真,则p,q同时为真,即,解得2x3,实数x的取值范围(2,3)(2)若p是q的充分不必要条件,即q是p的充分不必要条件,即,解得1a216. 解:tan=2(1)tan(+)=-3;(2)=117. 解:()由y=2x,则切线l的斜率k=y|x=1=21=2,切线l的方程为y-1=2(x-1)即2x-y-1=0;()如图,所求的图形的面积18. 解:()因为,由,求得,可得函数f(x)的单调递增区间为,kZ由,求得故f(x)的对称轴方程为,其中kZ()因为,所以,故有,故当即x=0时,f(x)的最小值为-1,当即时,f(x)的最大值为219.
7、解:(1)f(x)的定义域是(0,+),f(x)=lnx+1,令f(x)0,解得:x,令f(x)0,解得:0x,故f(x)在,)递减,在(,3递增,故f(x)min=f()=-,f(x)max=3ln3;(2)要证f(x)-(x+1)2-3x-1,即证lnx-x+10,令h(x)=lnx-x+1,(x0),h(x)=-1=,令h(x)0,即1-x0,解得:0x1,令h(x)0,解得:x1,故h(x)在(0,1)递增,在(1,+)递减,故h(x)max=h(1)=0,故h(x)0,问题得证【解析】1. 解:A=1,2,3,B=2,3,4,AB=1,2,3,4故选A集合A=1,2,3,B=2,3,
8、4,求AB,可用并集的定义直接求出两集合的并集本题考查并集及其运算,解题的关系是正确理解并集的定义及求并集的运算规则,是集合中的基本概念型题2. 解:z=i(-2+i)=-2i-1对应的点(-1,-2)位于第三象限故选:C利用复数的运算法则、几何意义即可得出本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题3. 解:sin(+)+cos(-)=故选:C原式利用诱导公式化简,再利用特殊角的三角函数值计算即可得答案本题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键,是基础题4. 【分析】由角的正弦值和角所在的象限,求出角的余弦值,然后,正弦值除以余弦值得正切值掌握
9、同角三角函数的基本关系式,并会运用它们进行简单的三角函数式的化简、求值及恒等式证明本题是给值求值,属于较易题【解答】解:且是第二象限的角,故选A.5. 解:在ABC中,若三边长分别为a=7,b=5,c=8,由余弦定理可得64=49+25-275cosC,cosC=,sinC=,SABC=10故选B利用余弦定理求得cosC,再利用同角三角函数的基本关系求得sinC,代入ABC的面积公式进行运算即可本题考查余弦定理的应用,同角三角函数的基本关系,求出sinC是解题的关键6. 解:由表格可得,函数f(x)=x3+x2-2x-2的零点在(1.4375,1.40625)之间;结合选项可知,方程x3+x2
10、-2x-2=0的一个近似根(精确度为0.05)可以是1.42;故选C由二分法及函数零点的判定定理可知函数f(x)=x3+x2-2x-2的零点在(1.4375,1.40625)之间;从而判断本题考查了函数的零点与方程的根的关系应用及二分法的应用,属于基础题7. 解:解:对于A,是奇函数,在(0,+)上单调递减,不正确;对于B,既是偶函数又是(0,+)上的增函数,正确,对于C,非奇非偶函数,不正确;对于D,非奇非偶函数,不正确,故选B分别确定函数的奇偶性,在区间(0,+)上的单调性,可得结论本题考查函数的奇偶性,在区间(0,+)上的单调性,考查学生的计算能力,比较基础8. 解:若pq是真命题,则p
11、,q都是真命题,则p是假命题,即充分性不成立,若p是真命题,则p是假命题,此时pq是假命题,即必要性不成立,故“pq是真命题”是“p是真命题”的既不充分也不必要条件,故选:D根据复合命题之间的关系结合充分条件和必要条件的定义即可得到结论本题主要考查充分条件和必要条件的判断,根据复合命题真假之间的关系是解决本题的关键9. 解:由题意可知:x0,x2,f(x)0,函数是增函数,x(0,2),函数是减函数;x=0是函数的极大值点,x=2是函数的极小值点;所以函数的图象只能是C故选:C利用导函数的图象,判断导函数的符号,得到函数的单调性以及函数的极值,然后判断选项即可本题考查函数的导数与函数的图象的关
12、系,判断函数的单调性以及函数的极值是解题的关键10. 解:由对数函数y=log2x的图象与性质,得log23log22=1,a1;由对数函数y=x的图象与性质,得31=0,b0;又c=,0c1;acb故选:D利用对数函数的图象与性质,得a1,b0;利用幂的运算法则,得出0c1;即可判定a、b、c的大小本题考查了对数函数的图象与性质的应用问题,解题时应利用对数函数的图象与性质以及1与0等数值比较大小,是基础题11. 解:A=x|-2x1,B=x|0x2,AB=x|0x1故答案为:x|0x1 找出A与B解集的公共部分,即可确定出两集合的交集此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键1
13、2. 解:z=(1+2i)(3-i)=5+5i,则z的实部是5,故答案为:5利用复数的运算法则即可得出本题考查了复数的运算性质,考查了推理能力与计算能力,属于基础题13. 解:函数的周期T=,故y=f(x)是以为最小正周期的周期函数正确;f(x)=4sin(2x+)=4cos(-2x-)=4cos(-2x)=4cos(2x-);故y=f(x)可改写为y=4cos(2x-)正确;当4sin(2x+)=1时,y=f(x)的最大值为4,正确;当x=时,f()=4sin(2+)=4sin=4为最大值,即f(x)的图象关于直线x=对称,正确故正确的是,故答案为:根据三角函数的周期公式进行求解;根据三角函
14、数的诱导公式进行转化;结合三角函数的有界性和最值进行求解判断;根据三角函数的对称性进行判断;本题主要考查命题的真假判断,根据三角函数的图象和性质是解决本题的关键14. 解:函数y=f(x)的图象在点x=2处的切线方程是y=-2x+5,f(2)=-2,f(2)=-4+5=1,f(2)+f(2)=-2+1=-1,故答案为:-1根据导数的几何意义和切线方程求出f(2),把x=2代入切线方程求出f(2),代入即可求出f(2)+f(2)的值本题考查导数的几何意义,以及切点在切线上的灵活应用,属于基础题15. (1)若a=1,分别求出p,q成立的等价条件,利用且pq为真,求实数x的取值范围;(2)利用p是
15、q的充分不必要条件,即q是p的充分不必要条件,求实数a的取值范围本题主要考查复合命题与简单命题之间的关系,利用逆否命题的等价性将p是q的充分不必要条件,转化为q是p的充分不必要条件是解决本题的关键,16. (1)直接利用两角和的正切函数求值即可(2)利用二倍角公式化简求解即可本题考查两角和的正切函数的应用,三角函数的化简求值,二倍角公式的应用,考查计算能力17. ()根据导数的几何意义即可求出切线方程;(2)根据定积分的几何意义即可求出所围成的图形的面积本题考查了切线方程的求法和定积分的我几何意义,属于基础题18. ()利用正弦函数的单调性、以及图象的对称性,求得函数f(x)的单调递增区间与对称轴方程()当x0,时,利用正弦函数的定义域和值域,求得f(x)的最大值与最小值本题主要考查正弦函数的单调性、以及图象的对称性,正弦函数的定义域和值域,属于基础题19. (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最值即可;(2)问题转化为证lnx-x+10,令h(x)=lnx-x+1,(x0),根据函数的单调性求出h(x)的最大值,从而证明结论即可本题考查了求函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,考查不等式的证明,转化思想,是一道中档题