1、真题感悟考点整合热点聚焦题型突破归纳总结思维升华第1讲 直线与圆真题感悟考点整合热点聚焦题型突破归纳总结思维升华高考定位高考对本内容的考查重点是直线间的平行和垂直的条件、与距离有关的问题.直线与圆的位置关系(特别是弦长问题),此类问题难度属于中等,一般以填空题的形式出现,有时也会出现解答题,多考查其几何图形的性质或方程知识.多为B级或C级要求.真题感悟考点整合热点聚焦题型突破归纳总结思维升华真 题 感 悟1.(2015江苏卷)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mxy2m10(mR)相切的所有圆中,半径最大的圆的标准方程为_.答案(x1)2y22真题感悟考点整合热点聚焦题型突
2、破归纳总结思维升华2.(2013江苏卷)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y2x4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线yx1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA2MO,求圆心C的横坐标a的取值范围.真题感悟考点整合热点聚焦题型突破归纳总结思维升华真题感悟考点整合热点聚焦题型突破归纳总结思维升华真题感悟考点整合热点聚焦题型突破归纳总结思维升华考 点 整 合1.两直线平行或垂直(1)两条直线平行:对于两条不重合的直线l1,l2,其斜率分别为k1,k2,则有l1l2k1k2.特别地,当直线l1,l2的斜率都不存在且l1与l2不重
3、合时,l1l2.(2)两条直线垂直:对于两条直线l1,l2,其斜率分别为k1,k2,则有l1l2k1k21.特别地,当l1,l2中有一条直线的斜率不存在,另一条直线的斜率为零时,l1l2.真题感悟考点整合热点聚焦题型突破归纳总结思维升华真题感悟考点整合热点聚焦题型突破归纳总结思维升华3.直线方程的5种形式中只有一般式可以表示所有的直线.在利用直线方程的其他形式解题时,一定要注意它们表示直线的局限性.比如,根据“在两坐标轴上的截距相等”这个条件设方程时一定不要忽略过原点的特殊情况.而题中给出直线方程的一般式,我们通常先把它转化为斜截式再进行处理.4.处理有关圆的问题,要特别注意圆心、半径及平面几
4、何知识的应用,如弦心距、半径、弦长的一半构成直角三角形经常用到,利用圆的一些特殊几何性质解题,往往使问题简化.真题感悟考点整合热点聚焦题型突破归纳总结思维升华5.直线与圆中常见的最值问题(1)圆外一点与圆上任一点的距离的最值.(2)直线与圆相离,圆上任一点到直线的距离的最值.(3)过圆内一定点的直线被圆截得弦长的最值.(4)直线与圆相离,过直线上一点作圆的切线,切线长的最小值问题.(5)两圆相离,两圆上点的距离的最值.真题感悟考点整合热点聚焦题型突破归纳总结思维升华热点一 直线与圆有关问题微题型1求圆的方程【例11】(2015广州模拟)若圆C经过(1,0),(3,0)两点,且与y轴相切,则圆C
5、的方程为_.真题感悟考点整合热点聚焦题型突破归纳总结思维升华探究提高圆的标准方程直接表示出了圆心和半径,而圆的一般方程则表示出了曲线与二元二次方程的关系,在求解圆的方程时,要根据所给条件选取适当的方程形式.真题感悟考点整合热点聚焦题型突破归纳总结思维升华微题型2圆的切线问题【例12】(2015重庆卷改编)已知直线l:xay10(aR)是圆C:x2y24x2y10的对称轴,过点A(4,a)作圆C的一条切线,切点为B,则AB_.答案6真题感悟考点整合热点聚焦题型突破归纳总结思维升华探究提高(1)直线与圆相切时利用“切线与过切点的半径垂直,圆心到切线的距离等于半径”建立切线斜率的等式,所以求切线方程
6、时主要选择点斜式.(2)过圆外一点求解切线长转化为圆心到圆外点距离,利用勾股定理处理.真题感悟考点整合热点聚焦题型突破归纳总结思维升华微题型3与圆有关的弦长问题真题感悟考点整合热点聚焦题型突破归纳总结思维升华真题感悟考点整合热点聚焦题型突破归纳总结思维升华真题感悟考点整合热点聚焦题型突破归纳总结思维升华【训练1】(2015全国卷改编)过三点A(1,3),B(4,2),C(1,7)的圆交y轴于M、N两点,则|MN|_.真题感悟考点整合热点聚焦题型突破归纳总结思维升华热点二 直线与圆、圆与圆的位置关系真题感悟考点整合热点聚焦题型突破归纳总结思维升华真题感悟考点整合热点聚焦题型突破归纳总结思维升华真
7、题感悟考点整合热点聚焦题型突破归纳总结思维升华探究提高根据圆心到直线的距离与圆的半径的大小关系,判定直线与圆的位置关系.真题感悟考点整合热点聚焦题型突破归纳总结思维升华【训练2】在平面直角坐标系xOy中,已知圆C1:(x3)2(y2)24,圆C2:(xm)2(ym5)22m28m10(mR,且m3).(1)设P为坐标轴上的点,满足:过点P分别作圆C1与圆C2的一条切线,切点分别为T1、T2,使得PT1PT2,试求出所有满足条件的点P的坐标;(2)若斜率为正数的直线l平分圆C1,求证:直线l与圆C2总相交.真题感悟考点整合热点聚焦题型突破归纳总结思维升华真题感悟考点整合热点聚焦题型突破归纳总结思
8、维升华真题感悟考点整合热点聚焦题型突破归纳总结思维升华热点三 直线、圆与其他知识的交汇真题感悟考点整合热点聚焦题型突破归纳总结思维升华真题感悟考点整合热点聚焦题型突破归纳总结思维升华真题感悟考点整合热点聚焦题型突破归纳总结思维升华真题感悟考点整合热点聚焦题型突破归纳总结思维升华真题感悟考点整合热点聚焦题型突破归纳总结思维升华真题感悟考点整合热点聚焦题型突破归纳总结思维升华真题感悟考点整合热点聚焦题型突破归纳总结思维升华1.由于直线方程有多种形式,各种形式适用的条件、范围不同,在具体求直线方程时,由所给的条件和采用的直线方程形式所限,可能会产生遗漏的情况,尤其在选择点斜式、斜截式时要注意斜率不存
9、在的情况.真题感悟考点整合热点聚焦题型突破归纳总结思维升华2.确定圆的方程时,常用到圆的几个性质:(1)直线与圆相交时应用垂径定理构成直角三角形(半弦长,弦心距,圆半径);(2)圆心在过切点且与切线垂直的直线上;(3)圆心在任一弦的中垂线上;(4)两圆内切或外切时,切点与两圆圆心三点共线;(5)圆的对称性:圆关于圆心成中心对称,关于任意一条过圆心的直线成轴对称.真题感悟考点整合热点聚焦题型突破归纳总结思维升华3.直线与圆中常见的最值问题圆上的点与圆外点的距离的最值问题,可以转化为圆心到点的距离问题;圆上的点与直线上点的距离的最值问题,可以转化为圆心到直线的距离问题;圆上的点与另一圆上点的距离的最值问题,可以转化为圆心到圆心的距离问题.4.两圆相交,将两圆方程联立消去二次项,得到一个二元一次方程即为两圆公共弦所在的直线方程.