ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:567KB ,
资源ID:1175333      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1175333-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高中新教材人教A版数学课后习题 选择性必修第二册 第五章 5-1 第2课时 导数的几何意义 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

高中新教材人教A版数学课后习题 选择性必修第二册 第五章 5-1 第2课时 导数的几何意义 WORD版含解析.doc

1、第2课时导数的几何意义课后训练巩固提升A组1.如果曲线y=f(x)在点(2,3)处的切线过点(-1,2),那么有()A.f(2)0D.f(2)不存在解析:由题意知切线过点(2,3),(-1,2),所以切线的斜率k=f(2)=0.故选C.答案:C2.已知函数f(x)的导函数y=f(x)的图象如图所示,则在f(x)的图象上A,B的对应点附近,有()A.A处下降,B处上升B.A处上升,B处下降C.A处下降,B处下降D.A处上升,B处上升解析:所给图象是导函数的图象,且点A处f(x)0,函数f(x)的图象在点A处的切线斜率小于0,在点B处的切线斜率大于0.故选A.答案:A3.已知曲线y=f(x)=x2

2、+2x在某点处的切线的斜率是4,则该切点的横坐标为()A.-2B.-1C.1D.2解析:y=f(x+x)-f(x)=(x+x)2+2(x+x)-x2-2x=xx+(x)2+2x,=x+x+2.f(x)=x+2.设切点的坐标为(x0,y0),则f(x0)=x0+2.由已知x0+2=4,得x0=2.故选D.答案:D4.若直线y=kx+1与曲线y=x3+ax+b相切于点P(1,3),则b等于()A.3B.-3C.5D.-5解析:点P(1,3)既在直线上又在曲线上,3=k+1,3=1+a+b,解得k=2,a+b=2.y=x3+ax+b的导数为y=3x2+a,312+a=k=2,a=-1,b=3.故选A

3、.答案:A5.若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则()A.a=1,b=1B.a=-1,b=1C.a=1,b=-1D.a=-1,b=-1解析:由y=(x+2x+a)=2x+a,得y|x=0=a.因为切线的斜率为1,所以y|x=0=a=1.又因为点(0,b)在直线x-y+1=0上,所以b=1.故选A.答案:A6.设f(x)是偶函数,若曲线y=f(x)在点(1,f(1)处的切线的斜率为1,则该曲线在点(-1,f(-1)处的切线的斜率为.解析:由偶函数的图象和性质可知应为-1.答案:-17.曲线y=f(x)=3x+x2在点(1,f(1)处的切线方程为.解析:曲线y=f

4、(x)在点(1,f(1)处的切线的斜率k=5.f(1)=4,切线方程为y-4=5(x-1),即y=5x-1.答案:y=5x-18.已知P是抛物线y=x2上一点,且过点P的切线与直线y=-x+1垂直,则过点P的切线方程为 .解析:设点P(x0,).由已知得过点P的切线的斜率k=y=2x0=2,故x0=1,从而点P(1,1).因此,过点P的切线方程为y-1=2(x-1),即y=2x-1.答案:y=2x-19.已知函数y=f(x),y=g(x),y=h(x)的大致图象如图所示,其导数的大致图象如图所示,则y=f(x)对应;y=g(x)对应;y=h(x)对应.解析:根据导数的几何意义求解.由于曲线y=

5、f(x)在任一点处的切线斜率均小于0且保持不变,故y=f(x)对应B.曲线y=g(x)在任一点处的切线斜率均小于0,且随x的增大,切线的斜率增大,且趋近于0.故y=g(x)对应C.曲线y=h(x)在任一点处的切线的斜率均大于0,且先小后大,故y=h(x)对应A.答案:BCA10.如果曲线y=f(x)=x2+x-3的某一条切线与直线y=3x+4平行,求切点的坐标与切线方程.解:切线与直线y=3x+4平行,切线的斜率为3.设切点的坐标为(x0,y0),则y=(x+2x0+1)=2x0+1,2x0+1=3,可得x0=1.将x0=1代入y=x2+x-3,得y0=-1,切点的坐标为(1,-1).切线的方

6、程为y+1=3(x-1),即3x-y-4=0.11.已知曲线y=x3上一点P,求:(1)曲线在点P处的切线的斜率;(2)曲线在点P处的切线方程.解:(1)由y=x3,得y=3x2+3xx+(x)2=x2.因为y|x=2=22=4.所以曲线在点P处的切线的斜率等于4.(2)曲线在点P处的切线方程为y-=4(x-2),即12x-3y-16=0.B组1.已知函数f(x)的图象如图所示,f(x)是函数f(x)的导函数,则下列数值大小比较正确的是()A.2f(2)f(4)-f(2)2f(4)B.2f(4)2f(2)f(4)-f(2)C.2f(2)2f(4)f(4)-f(2)D.f(4)-f(2)2f(4

7、)2f(2)解析:由导数的几何意义知,f(2)为曲线y=f(x)在点(2,f(2)处的切线斜率,f(4)为曲线y=f(x)在点(4,f(4)处的切线斜率,过点(2,f(2),(4,f(4)的割线的斜率为.由函数f(x)的图象易知f(2)f(4),即2f(2)f(4)-f(2)2f(4),故选A.答案:A2.若曲线y=f(x)=x3在点(a,a3)(a0)处的切线与x轴、直线x=a所围成的三角形的面积为,则a=()A.2B.1C.-1D.1解析:f(a)=3a2,曲线在点(a,a3)处的切线方程为y-a3=3a2(x-a).切线与x轴的交点为.三角形的面积为|a3|=,解得a=1.答案:D3.过

8、点(-1,0)作抛物线y=x2+x+1的切线,则其中一条切线的方程为()A.2x+y+3=0B.3x-y+5=0C.2x+y+1=0D.x-y+1=0解析:由于点(-1,0)不在抛物线y=x2+x+1上,故设切点坐标为(x0,y0).y=2x+1,切线的斜率为2x0+1.又y0=+x0+1,切线方程为y-x0-1=(2x0+1)(x-x0).将点(-1,0)的坐标代入切线方程,得x0=0或x0=-2.当x0=0时,y0=1;当x0=-2时,y0=3.这时可以得到两条直线方程,经验证,只有D符合.答案:D4.下列点中,在曲线y=f(x)=x2上,且在该点处的切线的倾斜角为的是()A.(0,0)B

9、.(2,4)C.D.解析:设该切点的坐标为(x0,f(x0),则f(x0)=(2x0+x)=2x0=tan=1,可得x0=,故该切点为.故选D.答案:D5.已知曲线y=x3在点(2,8)处的切线方程为12x-ay-b=0,则实数a的值为.解析:y|x=2=6x+(x)2+12=12.由题意知a0,从而=12,得a=1.答案:16.过点P(-1,2)且与曲线y=3x2-4x+2在点M(1,1)处的切线平行的直线方程是.解析:y|x=1=(2+3x)=2,所求直线的斜率k=2.直线方程为y-2=2(x+1),即2x-y+4=0.答案:2x-y+4=07.如图,曲线y=f(x)在点P处的切线方程为y

10、=-2x+5,则f(2)+f(2)=.解析:曲线y=f(x)在点(2,f(2)处的切线方程是y=-2x+5,f(2)=-2,f(2)=-4+5=1,f(2)+f(2)=1+(-2)=-1.答案:-18.求过点P(3,5),且与曲线y=x2相切的直线方程.解:y=2x.由于点P不在曲线上,故设切点为A(x0,),x03,则切线的斜率为y=2x0.所求切线过P(3,5)和A(x0,)两点,y=kPA,即2x0=,解得x0=1或x0=5.从而切点A的坐标为(1,1)或(5,25).当切点为(1,1)时,切线的斜率为k1=2x0=2;当切点为(5,25)时,切线的斜率为k2=2x0=10.所求的切线有两条,切线方程分别为y-1=2(x-1),y-25=10(x-5),即y=2x-1,y=10x-25.9.已知直线l:y=x+a(a0)和曲线C:y=x3-x2+1相切,求a的值及切点的坐标.解:设直线l与曲线C相切于点P(x0,y0).设函数f(x)=y=x3-x2+1,则f(x)=3x2-2x.由题意知,切线的斜率k=1,即3-2x0=1,解得x0=-或x0=1.于是切点的坐标为或(1,1).当切点为时,由=-+a,得a=.当切点为(1,1)时,由1=1+a,得a=0(舍去).故a的值为,切点坐标为.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3