ImageVerifierCode 换一换
格式:DOC , 页数:19 ,大小:321.50KB ,
资源ID:115133      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-115133-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2018北师大版文科数学高考总复习教师用书:9-5椭圆 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2018北师大版文科数学高考总复习教师用书:9-5椭圆 WORD版含答案.doc

1、第5讲椭圆最新考纲1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用;2.掌握椭圆的定义、几何图形、标准方程及简单几何性质知 识 梳 理1椭圆的定义我们把平面内到两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的集合叫作椭圆这两个定点F1,F2叫作椭圆的焦点,两个焦点F1,F2间的距离叫作焦距集合PM|MF1|MF2|2a,|F1F2|2c,其中a0,c0,且a,c为常数:(1)若ac,则集合P为椭圆;(2)若ac,则集合P为线段;(3)若ac,则集合P为空集2椭圆的标准方程和几何性质标准方程1(ab0)1(ab0)图形性质范围axabybbxbaya对称性对称轴

2、:坐标轴;对称中心:原点顶点A1(a,0),A2(a,0),B1(0,b),B2(0,b)A1(0,a),A2(0,a),B1(b,0),B2(b,0)轴长轴A1A2的长为2a;短轴B1B2的长为2b焦距|F1F2|2c离心率e(0,1)a,b,c的关系c2a2b2诊 断 自 测1判断正误(在括号内打“”或“”)精彩PPT展示(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆()(2)椭圆的离心率e越大,椭圆就越圆()(3)椭圆既是轴对称图形,又是中心对称图形()(4)方程mx2ny21(m0,n0,mn)表示的曲线是椭圆()(5)1(ab0)与1(ab0)的焦距相同()解析(

3、1)由椭圆的定义知,当该常数大于|F1F2|时,其轨迹才是椭圆,而常数等于|F1F2|时,其轨迹为线段F1F2,常数小于|F1F2|时,不存在这样的图形(2)因为e,所以e越大,则越小,椭圆就越扁答案(1)(2)(3)(4)(5)2(2015广东卷)已知椭圆1(m0)的左焦点为F1(4,0),则m()A2 B3 C4 D9解析依题意有25m216,m0,m3.选B.答案B3已知椭圆C:1(ab0)的左、右焦点分别为F1,F2,离心率为,过F2的直线l交C于A,B两点若AF1B的周长为4,则C的方程为()A.1 B.y21C.1 D.1解析由椭圆的定义可知AF1B的周长为4a,所以4a4,故a,

4、又由e,得c1,所以b2a2c22,则C的方程为1,故选A.答案A4(2016全国卷)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A. B.C. D.解析不妨设直线l经过椭圆的一个顶点B(0,b)和一个焦点F(c,0),则直线l的方程为1,即bxcybc0.由题意知2b,解得,即e,故选B.答案B5(教材改编)已知点P是椭圆1上y轴右侧的一点,且以点P及焦点F1,F2为顶点的三角形的面积等于1,则点P的坐标为_解析设P(x,y),由题意知c2a2b2541,所以c1,则F1(1,0),F2(1,0),由题意可得点P到x轴的距离为1,所以y1,把y

5、1代入1,得x,又x0,所以x,P点坐标为或.答案或考点一椭圆的定义及其应用【例1】 (1)如图,圆O的半径为定长r,A是圆O内一个定点,P是圆上任意一点,线段AP的垂直平分线l和半径OP相交于点Q,当点P在圆上运动时,点Q的轨迹是()A椭圆 B双曲线 C抛物线 D圆(2)已知F1,F2是椭圆C:1(ab0)的两个焦点,P为椭圆C上的一点,且F1PF260,SPF1F23,则b_.解析(1)连接QA.由已知得|QA|QP|.所以|QO|QA|QO|QP|OP|r.又因为点A在圆内,所以|OA|OP|,根据椭圆的定义,点Q的轨迹是以O,A为焦点,r为长轴长的椭圆故选A.(2)由题意得|PF1|P

6、F2|2a,又F1PF260,所以|PF1|2|PF2|22|PF1|PF2|cos 60|F1F2|2,所以(|PF1|PF2|)23|PF1|PF2|4c2,所以3|PF1|PF2|4a24c24b2,所以|PF1|PF2|b2,所以SPF1F2|PF1|PF2|sin 60b2b23,所以b3.答案(1)A(2)3规律方法(1)椭圆定义的应用主要有两个方面:一是判定平面内动点与两定点的轨迹是否为椭圆;二是利用定义求焦点三角形的周长、面积、弦长、最值和离心率等(2)椭圆的定义式必须满足2a|F1F2|.【训练1】 (1)已知椭圆1的两个焦点是F1,F2,点P在该椭圆上,若|PF1|PF2|

7、2,则PF1F2的面积是()A. B2C2 D.(2)(2017南昌调研)与圆C1:(x3)2y21外切,且与圆C2:(x3)2y281内切的动圆圆心P的轨迹方程为_解析(1)由椭圆的方程可知a2,c,且|PF1|PF2|2a4,又|PF1|PF2|2,所以|PF1|3,|PF2|1.又|F1F2|2c2,所以有|PF1|2|PF2|2|F1F2|2,即PF1F2为直角三角形,且PF2F为直角,所以SPF1F2|F1F2|PF2|21.(2)设动圆的半径为r,圆心为P(x,y),则有|PC1|r1,|PC2|9r.所以|PC1|PC2|10|C1C2|,即P在以C1(3,0),C2(3,0)为

8、焦点,长轴长为10的椭圆上,得点P的轨迹方程为1.答案(1)A(2)1考点二椭圆的标准方程【例2】 (1)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点,(,),则椭圆方程为_(2)过点(,),且与椭圆1有相同焦点的椭圆标准方程为_解析(1)设椭圆方程为mx2ny21(m,n0,mn)由解得m,n.椭圆方程为1.(2)法一椭圆1的焦点为(0,4),(0,4),即c4.由椭圆的定义知,2a,解得a2.由c2a2b2可得b24.所以所求椭圆的标准方程为1.法二设所求椭圆方程为1(kb0)过点F2(1,0)且垂直于x轴的直线被曲线C截得弦长|AB|3,点A必在椭圆上,1.又由c1,得1b2a2.

9、由联立,得b23,a24.故所求椭圆C的方程为1.答案(1)A(2)1考点三椭圆的几何性质【例3】 (1)(2016全国卷)已知O为坐标原点,F是椭圆C:1(ab0)的左焦点,A,B分别为C的左、右顶点P为C上一点,且PFx轴过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A. B. C. D.(2)(2015福建卷)已知椭圆E:1(ab0)的右焦点为F,短轴的一个端点为M,直线l:3x4y0交椭圆E于A,B两点若|AF|BF|4,点M到直线l的距离不小于,则椭圆E的离心率的取值范围是()A. B.C. D.解析(1)设M(c,m),则E,OE的中

10、点为D,则D,又B,D,M三点共线,所以,所以a3c,所以e.(2)设左焦点为F0,连接F0A,F0B,则四边形AFBF0为平行四边形|AF|BF|4,|AF|AF0|4,a2.设M(0,b),则,1bb0),e,其中F是椭圆的右焦点,焦距为2,直线l与椭圆C交于点A,B,线段AB的中点横坐标为,且(其中1)(1)求椭圆C的标准方程;(2)求实数的值解(1)由条件可知,c1,a2,故b2a2c23,椭圆C的标准方程是1.(2)由,可知A,B,F三点共线,设点A(x1,y1),点B(x2,y2)若直线ABx轴,则x1x21,不符合题意当AB所在直线l的斜率k存在时,设方程为yk(x1)由消去y得

11、(34k2)x28k2x4k2120.由的判别式64k44(4k23)(4k212)144(k21)0.x1x2,k2.将k2代入方程,得4x22x110,解得x.又(1x1,y1),(x21,y2),又1,.思想方法1椭圆的定义揭示了椭圆的本质属性,正确理解、掌握定义是关键,应注意定义中的常数大于|F1F2|,避免了动点轨迹是线段或不存在的情况2求椭圆的标准方程,常采用“先定位,后定量”的方法(待定系数法)先“定位”,就是先确定椭圆和坐标系的相对位置,以椭圆的中心为原点的前提下,看焦点在哪条坐标轴上,确定标准方程的形式;再“定量”,就是根据已知条件,通过解方程(组)等手段,确定a2,b2的值

12、,代入所设的方程,即可求出椭圆的标准方程若不能确定焦点的位置,这时的标准方程常可设为mx2ny21(m0,n0且mn)易错防范1判断两种标准方程的方法为比较标准形式中x2与y2的分母大小2在解关于离心率e的二次方程时,要注意利用椭圆的离心率e(0,1)进行根的取舍,否则将产生增根3椭圆的范围或最值问题常常涉及一些不等式例如,axa,byb,0e1等,在求椭圆相关量的范围时,要注意应用这些不等关系.基础巩固题组(建议用时:40分钟)一、选择题1椭圆1的焦距为2,则m的值等于()A5 B3 C5或3 D8解析当m4时,m41,m5;当0m4时,4m1,m3.答案C2“2m6”是“方程1表示椭圆”的

13、()A充分不必要条件 B必要不充分条件C充要条件 D既不充分也不必要条件解析若1表示椭圆则有2m6且m4.故“2mb0)的左焦点为F,若F关于直线xy0的对称点A是椭圆C上的点,则椭圆C的离心率为()A. B.C. D.1解析设F(c,0)关于直线xy0的对称点A(m,n),则m,nc,代入椭圆方程可得1,并把b2a2c2代入,化简可得e48e240,解得e242,又0e1,e1,故选D.答案D12(2017海沧实验中学模拟)已知直线l:ykx2过椭圆1(ab0)的上顶点B和左焦点F,且被圆x2y24截得的弦长为L,若L,则椭圆离心率e的取值范围是()A. B.C. D.解析依题意,知b2,k

14、c2.设圆心到直线l的距离为d,则L2,解得d2.又因为d,所以,解得k2.于是e2,所以0e2,解得0e.故选B.答案B13椭圆y21的左、右焦点分别为F1,F2,点P为椭圆上一动点,若F1PF2为钝角,则点P的横坐标的取值范围是_解析设椭圆上一点P的坐标为(x,y),则(x,y),(x,y)F1PF2为钝角,0,即x23y20,y21,代入得x2310,即x22,x2.解得x,x.答案14(2017西安质监)已知椭圆1(ab0)的左、右焦点分别为F1,F2,且|F1F2|6,直线ykx与椭圆交于A,B两点(1)若AF1F2的周长为16,求椭圆的标准方程;(2)若k,且A,B,F1,F2四点

15、共圆,求椭圆离心率e的值;(3)在(2)的条件下,设P(x0,y0)为椭圆上一点,且直线PA的斜率k1(2,1),试求直线PB的斜率k2的取值范围解(1)由题意得c3,根据2a2c16,得a5.结合a2b2c2,解得a225,b216.所以椭圆的标准方程为1.(2)法一由得x2a2b20.设A(x1,y1),B(x2,y2),所以x1x20,x1x2,由AB,F1F2互相平分且共圆,易知,AF2BF2,因为(x13,y1),(x23,y2),所以(x13)(x23)y1y2x1x290.即x1x28,所以有8,结合b29a2,解得a212,e.法二设A(x1,y1),又AB,F1F2互相平分且共圆,所以AB,F1F2是圆的直径,所以xy9,又由椭圆及直线方程综合可得由前两个方程解得x8,y1,将其代入第三个方程并结合b2a2c2a29,解得a212,故e.(3)由(2)的结论知,椭圆方程为1,由题可设A(x1,y1),B(x1,y1),k1,k2,所以k1k2,又.即k2,由2k11可知,k2.故直线PB的斜率k2的取值范围是.特别提醒:教师配赠习题、课件、视频、图片、文档等各种电子资源见创新设计高考总复习光盘中内容.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3