收藏 分享(赏)

2022版新高考数学人教版一轮练习:(69) 正态分布 WORD版含解析.DOC

上传人:高**** 文档编号:1135878 上传时间:2024-06-05 格式:DOC 页数:11 大小:246.50KB
下载 相关 举报
2022版新高考数学人教版一轮练习:(69) 正态分布 WORD版含解析.DOC_第1页
第1页 / 共11页
2022版新高考数学人教版一轮练习:(69) 正态分布 WORD版含解析.DOC_第2页
第2页 / 共11页
2022版新高考数学人教版一轮练习:(69) 正态分布 WORD版含解析.DOC_第3页
第3页 / 共11页
2022版新高考数学人教版一轮练习:(69) 正态分布 WORD版含解析.DOC_第4页
第4页 / 共11页
2022版新高考数学人教版一轮练习:(69) 正态分布 WORD版含解析.DOC_第5页
第5页 / 共11页
2022版新高考数学人教版一轮练习:(69) 正态分布 WORD版含解析.DOC_第6页
第6页 / 共11页
2022版新高考数学人教版一轮练习:(69) 正态分布 WORD版含解析.DOC_第7页
第7页 / 共11页
2022版新高考数学人教版一轮练习:(69) 正态分布 WORD版含解析.DOC_第8页
第8页 / 共11页
2022版新高考数学人教版一轮练习:(69) 正态分布 WORD版含解析.DOC_第9页
第9页 / 共11页
2022版新高考数学人教版一轮练习:(69) 正态分布 WORD版含解析.DOC_第10页
第10页 / 共11页
2022版新高考数学人教版一轮练习:(69) 正态分布 WORD版含解析.DOC_第11页
第11页 / 共11页
亲,该文档总共11页,全部预览完了,如果喜欢就下载吧!
资源描述

1、练案69第九讲正态分布A组基础巩固一、单选题1(2021江苏扬州调研)已知随机变量XN(1,2),P(X0)0.8,则P(X2)(A)A0.2B0.4C0.6D0.8解析由XN(1,2),正态曲线关于X1对称,P(X2)P(Xk)P(Xk4),则k的值为(B)A6B7C8D9解析5,k7,故选B. 3(2020河北唐山一模)随机变量服从正态分布N(,2),若P(2)0.2,P(26)0.6,则(C)A6B5C4D3解析由题意可知P(6)1P(2)P(26)0.2,P(6)P(2),4.选C4(2021湖南益阳调研)已知随机变量服从正态分布N(1,2),若P(4)0.9,则P(24)(D)A0.

2、2B0.4C0.6D0.8解析由正态曲线的对称性知P(24)2P(10),则P(|X|)0.682 6,P(|X|2)0.954 4,P(|X|3)0.997 4.已知某校1 000名学生某次数学考试成绩服从正态分布N(110,100),据此估计该校本次数学考试成绩在130分以上的学生人数约为(C)A159B46C23D13解析由题意,110,10,故P(X130)P(X2) 0.022 8.估计该校本次数学考试成绩在130分以上的学生人数约为1 0000.022 822.823.故选 C6(2020浙江宁波期末)已知随机变量X的分布列是X123Pab若E(X),则D(X)的值是(A)ABCD

3、解析由P1P2P31,得ab.由E(X)2a3b,得2a3b,联立,得a,b.所以D(X)E(X2)(E(X)21492.故选A.7(2021甘肃兰州一中月考)从装有除颜色外完全相同的3个白球和m个黑球的布袋中随机摸取一球,有放回地摸取5次,设摸得白球个数为X,已知E(X)3,则D(X)(B)ABCD解析由题意知XB(5,),3,解得m2,XB(5,),D(X)5.8(2020福建模拟)已知随机变量XN(2,1),其正态分布密度曲线如图所示若在边长为1的正方形OABC内随机取一点,则该点恰好取自黑色区域的概率为(D)附:若随机变量N(,2),则P()0.682 6,P(22)0.954 4.A

4、0.135 9B0.658 7C0.728 2D0.864 1解析由题意P(0X1)(0.954 40.682 6)0.135 9.在正方形OABC内随机取一点,则该点恰好落在阴影部分的概率为P0.864 1.故选D.二、多选题9(2021山东青岛模拟)近年来中国进入一个鲜花消费的增长期,某农户利用精准扶贫政策,贷款承包了一个新型温室鲜花大棚,种植销售红玫瑰和白玫瑰若这个大棚的红玫瑰和白玫瑰的日销量分别服从正态分布N(,302)和N(280,402),则下列选项正确的是(ABD)附:若随机变量X服从正态分布N(,2),则P(X)0.682 6.A若红玫瑰日销售量范围在(30,280)的概率是0

5、.682 6,则红玫瑰日销售量的平均数约为250B红玫瑰日销售量比白玫瑰日销售量更集中C白玫瑰日销售量比红玫瑰日销售量更集中D白玫瑰日销售量范围在(280,320)的概率约为0.3413解析对于选项A:30280,250,正确;对于选项BC:利用越小越集中,30小于40,B正确,C不正确;对于选项D:P(280X320)P(X)0.682 60.341 3,正确故选ABD.10(2021湖北荆州中学调研)已知某校高三年级有1 000人参加一次数学模拟考试,现把这次考试的分数转换为标准分,标准分的分数转换区间为60,300,若使标准分X服从正态分布N(180,900)(参考数据:P(X)0.68

6、2 7;P(2X2)0.954 5;P(3X3)0.997 3.则(BC)A这次考试标准分超过180分的约有450人B这次考试标准分在(90,270内的人数约为997C甲、乙、丙三人恰有2人的标准分超过180分的概率为DP(240X270)0.042 8解析这次考试标准分超过180分的约有500人,A错;P(90X270)P(3X3)0.997 3,标准分在(90,270)内的人数约为0.997 31 000997,B正确甲、乙、丙恰有2人超过180分的概率为C2,C正确;P(240X270)0.021 4,D错误故选BC三、填空题11(2020吉林长春二模)已知随机变量X服从正态分布N(m,

7、2),若P(x3)P(x4),则m.解析由正态分布的性质可知,m.12(2021苏鲁名校联考)设随机变量服从正态分布N(1,2),若P(2)0.8,则P(02) 0.6 .解析由题意知P(12)P(2)0.50.3,P(02)2P(12)0.6.13(2021吉林一中模拟)若随机变量服从正态分布N(,2),则P()0.682 6,P(22)0.954 4.设N(1,2),且P(3)0.158 7,则 2 .解析P()0.682 6,P()(10.682 6)0.158 7,N (1,2),P(1)0.158 7P(3),13,即2.四、解答题14(2021重庆巴蜀中学适应性考试)新型冠状病毒肺

8、炎是一种急性感染性肺炎,其病原体是一种先前未在人类中发现的新型冠状病毒,即2019新型冠状病毒.2020年2月7日,国家卫健委决定将“新型冠状病毒感染的肺炎”暂命名为“新型冠状病毒肺炎”,简称“新冠肺炎”患者初始症状多为发热、乏力和干咳,并逐渐出现呼吸困难等严重表现,基于目前流行病学调查,潜伏期为114天,潜伏期具有传染性,无症状感染者也可能成为传染源,某市为了增强民众防控病毒的意识,举行了“预防新冠病毒知识竞赛”网上答题,随机抽取10 000人,答题成绩统计如图所示(1)由直方图可认为答题者的成绩z服从正态分布N(,2),其中,2分别为答题者的平均成绩和成绩的方差s2,那么这10 000名答

9、题者成绩超过84.81分的人数估计有多少人?(同一组中的数据用该组的区间中点值作代表)(2)如果成绩超过56.19分的民众我们认为是“防御知识合格者”,用这10 000名答题者的成绩来估计全市的民众,现从全市中随机抽取4人,“防御知识合格者”的人数为,求P(3)(精确到0.001)附:s2204.75,14.31;zN(,2),则P(z)0.682 6,P(2z2)0.954 4;0.841 340.501, 0.841 330.595.解析(1)由题意知:450.1550.15650.2750.3850.15950.1 70.5,因为z服从正态分布N(,2),其中70.5,2 D()204.

10、75,14.31,z服从正态分布N(,2)N(70.5,14.312),而P(z)P(56.19z84.81)0.682 6,P(z84.81)0.158 7,竞赛成绩超过84.81的人数估计为0158 710 0001 587人(2)由(1)知,成绩超过56.19的概率为10.158 70.841 3,而B(4,0.841 3),P(3)1P(4)1C0.841 3410.5010.499.15(2021广东六校联考)某公司在迎新年晚会上举行抽奖活动,有甲、乙两个抽奖方案供员工选择方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率均为.第一次抽奖,若未中奖,则抽奖结束若中奖,则通过抛一枚质地均

11、匀的硬币,决定是否继续进行第二次抽奖,规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖,且在第二次抽奖中,若中奖,则获得奖金1 000元;若未中奖,则所获得的奖金为0元方案乙:员工连续三次抽奖,每次中奖率均为,每次中奖均可获得奖金400元(1)求某员工选择方案甲进行抽奖所获奖金X(元)的分布列;(2)试比较某员工选择方案乙与选择方案甲进行抽奖,哪个方案更划算?解析(1)由题意,X的所有可能取值为0,500,1 000.则P(X0),P(X500),P(X1 000),某员工选择方案甲进行抽奖所获奖金X(元)的分布列为X05001 000P

12、(2)由(1)可知,选择方案甲进行抽奖所获奖金X的期望E(X)5001 000520,若选择方案乙进行抽奖,中奖次数B,则E()3,抽奖所获奖金X的期望E(X)E(400)400E()480,故选持方案甲较划算B组能力提升1(2020北京朝阳期末)春天即将来临,某学校开展以“拥抱春天,播种绿色”为主题的植物种植实践体验活动已知某种盆栽植物每株成活的概率为p,各株是否成活相互独立该学校的某班随机领养了此种盆栽植物10株,设X为其中成活的株数,若X的方差D(X)2.1,P(X3)P(X7),则p 0.7 .解析由题意可知:XB(10,p),且,即,p0.7.2(2021新高考八省联考)对一个物理量

13、做n次测量,并以测量结果的平均值作为该物理量的最后结果已知最后结果的误差nN,为使误差n在(0.5,0.5)的概率不小于0.954 5,至少要测量 32 次(若XN(,2),则P(|X|2)0.954 5)解析根据正态曲线的对称性知:要使误差n在(0.5,0.5)的概率不小于0.954 5,则(2,2)(0.5,0.5)且0,所以0.52n32.故答案为:32.3(2021河南洛阳统测)若某单位员工每月网购消费金额(单位:元)近似地服从正态分布N(1 000,5002),现从该单位任选10名员工,记其中每月网购消费金额恰在500元至2 000元之间的人数为,则的数学期望为(C)参考数据:若随机

14、变量X服从正态分布则N(,2),则P(X)0.682 7,P(2X2)0.954 5,P(3X3)0.997 3.A2.718B6.827C8.186D9.545解析P(1 000500X1 0002500)P(1 0002500X1 0002500)P(1 0002500X1 000500)P(1 0002500X1 0002500)0.818 6,的数学期望为0.8186108.186,故选 C4(2021云南名校适应性考试)某公司为招聘新员工设计了一个面试方案:应聘者从6道备选题中一次性随机抽取3道题,按照题目要求独立完成规定:至少正确完成其中2道题的便可通过已知6道备选题中应聘者甲有4

15、道题能正确完成,2道题不能完成;应聘者乙每道题正确完成的概率都是,且每道题正确完成与否互不影响(1)分别求甲、乙两人正确完成面试题数的分布列及数学期望;(2)请分析比较甲、乙两人谁面试通过的可能性大?解析(1)设甲正确完成面试的题数为,则的可能取值为1,2,3.P(1);P(2);P(3).应聘者甲正确完成题数的分布列为123PE()1232.设乙正确完成面试的题数为,则的可能取值为0,1,2,3.P(0)C3;P(1)C12;P(2)C2;P(3)C3.应聘者乙正确完成题数的分布列为0123PE()01232.(2)因为D()(12)2(22)2(32)2,D()3.所以D()D(),综上所

16、述,从做对题数的数学期望考查,两人水平相当;从做对题数的方差考查,甲较稳定;从至少完成2道题的概率考查,甲面试通过的可能性大5(2021辽宁大连模拟)某人居住在城镇的A处,准备开车到单位B处上班,若该地各路段发生堵车事件都是相互独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图(1)请你为其选择一条由A到B的最短路线,且使得途中发生堵车事件的概率最小;(2)若记路线ACFB中遇到堵车次数为随机变量,求的数学期望E()解析(1)各路段发生堵车事件都是相互独立的,且在同一路段发生堵车事件最多只有一次,路段ACDB中遇到堵车的概率P11.同理线路ACFB中遇到堵车的概率P2;路线A

17、EFB中遇到堵车的概率P3.所以选择路线ACFB,可使得途中发生堵车事件的概率最小(2)路线ACFB中遇到堵车次数可取值为0,1,2,3.P(0),P(1),P(2),P(3),E()0123.6(2021河南洛阳尖子生联考)“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,A市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,检测结果如频率分布直方图所示(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中数据用该组区间的中点值作代表);(2)由直方图可以认为,速冻水饺的该项质量指标值Z服从正态分布N(,2),利用该正态分布,求Z落在(14

18、.55,38.45)内的概率;将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于(10,30)内的包数为X,求X的分布列和数学期望附:计算得所抽查的这100包速冻水饺的质量指标的标准差为11.95;若ZN(,2),则P(Z)0.682 6,P(2Z2)0.954 4.解析(1)所抽取的100包速冻水饺该项质量指标值的样本平均数为:50.1150.2250.3350.25450.1526.5.(2)Z服从正态分布N(,2),且26.5,11.95,P(14.55Z38.45)P(26.511.95Z26.511.95)0.682 6,Z落在(14.55,38.45)内的概率是0.682 6.根据题意得XB,P(X0)C4;P(X1)C4;P(X2)C4;P(X3)C4;P(X4)C4.X的分布列为X01234PE(X)42.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3