1、第十一篇计数原理第1讲分类加法计数原理与分步乘法计数原理知 识 梳 理1分类加法计数原理完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,在第n类方案中有mn种不同的方法,则完成这件事情,共有Nm1m2mn种不同的方法2分步乘法计数原理完成一件事情需要分成n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,完成第n步有mn种不同的方法,那么完成这件事情共有Nm1m2mn种不同的方法3分类加法计数原理与分步乘法计数原理,都涉及完成一件事情的不同方法的种数它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一
2、种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成辨 析 感 悟1两个计数原理的理解(1)在分类加法计数原理中,两类不同方案中的方法可以相同()(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事()(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的()(4)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事()2两个计数原理的应用(5)(教材习题改编)三个人踢毽,互相传递,每人每次只能踢一下,由甲开始踢,经过5次传递后,毽又被踢回给甲,则不同的传递方式共有10种()(6)用数字2,
3、3组成四位数,且数字2,3至少都出现一次,这样的四位数共有14个()感悟提升1两点区别一是分类加法计数原理中,完成一件事的方法属于其中一类并且只属于其中一类,简单的说分类的标准是“不重不漏,一步完成”,如(1)、(2)二是分步乘法计数原理中,各个步骤相互依存,在各个步骤中任取一种方法,即是完成这个步骤的一种方法,简单的说步与步之间的方法“相互独立,分步完成”,如(3)、(4)2两点提醒一是分类时,标准要明确,应做到不重不漏;可借助几何直观,探索规律,如(5)二是分步时,要合理设计顺序、步骤,并注意元素是否可以重复选取,如(6)中2,3可重复但至少各出现一次.考点一分类加法计数原理【例1】 (2
4、013福建卷改编)满足a,b1,0,1,2,且关于x的方程ax22xb0有实数解的有序数对(a,b)的个数为_解析由于a,b1,0,1,2(1)当a0时,有x为实根,则b1,0,1,2有4种可能;(2)当a0时,则方程有实根,44ab0,所以ab1.(*)当a1时,满足(*)式的b1,0,1,2有4种可能当a1时,b1,0,1,有3种可能当a2时,b1,0,有2种可能由分类加法计数原理,有序数对(a,b)共有443213(个)答案13规律方法 分类标准是运用分类计数原理的难点所在,重点在于抓住题目中的关键词或关键元素、关键位置首先根据题目特点恰当选择一个分类标准;其次分类时应注意完成这件事情的
5、任何一种方法必须属于某一类.【训练1】 某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有_解析赠送一本画册,3本集邮册,需从4人中选取一人赠送画册,其余送邮册,有C种方法赠送2本画册,2本集邮册,只需从4人中选出2人送画册,其余2人送邮册,有C种方法由分类加法计数原理,不同的赠送方法有CC10(种)答案10种考点二分步计数原理【例2】 将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有_解析先排第一列,由于每列的字母互不相同,因此共有A种不同排法再排第二列,其中第二列第一行的字母共
6、有2种不同的排法,第二列第二、三行的字母只有1种排法因此共有A2112(种)不同的排列方法答案12种规律方法 (1)利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事(2)分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成【训练2】 将一个四面体ABCD的六条棱上涂上红、黄、白三种颜色,要求共端点的棱不能涂相同颜色,则不同的涂色方案有_解析因为只有三种颜色,又要涂六条棱,所以应该将四面体的对棱涂成相同的颜色故有3216种涂色方案答案6种考点三两个计数原
7、理的综合应用【例3】 (2014济南质检)如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有_.14523审题路线由于区域1,2,3与区域4相邻,由条件宜采用分步处理,又相邻区域不同色,因此应按区域1和区域3是否同色分类求解解析按区域1与3是否同色分类;(1)区域1与3同色;先涂区域1与3有4种方法,再涂区域2,4,5(还有3种颜色)有A种方法区域1与3涂同色,共有4A24种方法(2)区域1与3不同色:先涂区域1与3有A种方法,第二步涂区域2有2种涂色方法,第三步涂区域4只有一种方法,第四步涂区域5有3种方法这时
8、共有A21372种方法,故由分类加法计数原理,不同的涂色种数为247296.答案96规律方法 (1)解决涂色问题,一定要分清所给的颜色是否用完,并选择恰当的涂色顺序(2)切实选择好分类标准,分清哪些可以同色,哪些不同色【训练3】 如果一个三位正整数如“a1a2a3”满足a1a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为_解析若a22,则“凸数”为120与121,共122个若a23,则“凸数”有236个若a24,满足条件的“凸数”有3412个,若a29,满足条件的“凸数”有8972个所有凸数有26122030425672240(个)答案2401分类加法计数原理与
9、分步乘法计数原理是解决排列组合问题的基础并贯穿始终(1)分类加法计数原理中,完成一件事的方法属于其中一类并且只属于其中一类(2)分步乘法计数原理中,各个步骤相互依存,步与步之间的方法“相互独立,分步完成”2(1)切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行(2)分类的关键在于要做到“不重不漏”,分步的关键在于要正确设计分步的程序,即合理分类,准确分步3若综合利用两个计数原理,一般先分类再分步 创新突破8与计数原理有关的新定义问题【典例】 (2012湖北卷)回文数是指从左到右与从右到左读都一样的正整数如22,121,3 443,94 249等显然2位回文数有9个:11,22,33
10、,99.3位回文数有90个:101,111,121,191,202,999.(*)则:(1)4位回文数有_个;(2)2n1(nN*)位回文数有_个(*)突破:由(*)式,理解“特殊”背景回文数的含义,借助计数原理计算结合(*),可从2位回文数,3位回文数,4位回文数探索求解方法,从特殊到一般发现规律解析(1)4位回文数相当于填4个方格,首尾相同,且不为0,共9种填法;中间两位一样,有10种填法共计91090(种)填法,即4位回文数有90个(2)根据回文数的定义,此问题也可以转化成填方格由计数原理,共有910n种填空答案(1)90(2)910n反思感悟 (1)一题两问,以“回文数”为新背景,考查
11、计数原理,体现了化归思想,将确定回文数的问题转化为“填方格”问题,进而利用分步乘法计数原理解决,将新信息转化为所学的数学知识来解决(2)从特殊情形入手,通过分析、归纳,发现问题中隐含的一些本质特征和规律,然后再推广到一般情形,必要时可以多列举一些特殊情形,使规律方法更加明确【自主体验】1(2014扬州调研)从8名女生4名男生中,选出3名学生组成课外小组,如果按性别比例分层抽样,则不同的抽取方法数为_种解析从男生中抽取1人有4种方法从女生中抽取两人有C28种方法由分步乘法计数原理,共有284112种方法答案1122(2013山东卷改编)用0,1,9十个数字,可以组成有重复数字的三位数的个数为_解
12、析0,1,2,9共能组成91010900(个)三位数,其中无重复数字的三位数有998648(个),有重复数字的三位数有900648252(个)答案252基础巩固题组(建议用时:40分钟)一、填空题1某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B,C,D中选择,其他四个号码可以从09这十个数字中选择(数字可以重复),有车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码可选的所有可能情况有_解析按照车主的要求,从左到右第一个号码有5种选法,第二位号码有3种选法,其余三位号码各有4种选法因此车牌号码可选的所有可能情况有
13、53444960(种)答案960种2(2012新课标全国卷改编)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有_解析分两步:第一步,选派一名教师到甲地,另一名到乙地,共有C2种选派方法;第二步,选派两名学生到甲地,另外两名到乙地,共有C6种选派方法由分步乘法计数原理,不同选派方案共有2612(种)答案12种36位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有_解析第一步先排甲,共有A种不同的排法;第二步再排其他人,共有A种不同的排法因此不同的演讲次序共有AA480(种)答案480种4从集合
14、1,2,3,10中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为_解析以1为首项的等比数列为1,2,4;1,3,9;以2为首项的等比数列为2,4,8;以4为首项的等比数列为4,6,9;把这四个数列顺序颠倒,又得到4个数列,所求的数列共有2(211)8(个)答案85集合Px,1,Qy,1,2,其中x,y1,2,3,9,且PQ.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是_解析当x2时,xy,点的个数为177(个)当x2时,由PQ,xy.x可从3,4,5,6,7,8,9中取,有7种方法因此满足条件的点共有7714(个)答案146从班委会5名成员中
15、选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有_种(用数字作答)解析第一步,先选出文娱委员,因为甲、乙不能担任,所以从剩下的3人中选1人当文娱委员,有3种选法第二步,从剩下的4人中选学习委员和体育委员,又可分两步进行:先选学习委员有4种选法,再选体育委员有3种选法由分步乘法计数原理可得,不同的选法共有34336(种)答案367如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有_个解析把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有8432个;第二类,有两条公共边的三角形共有8个由分类加法计数
16、原理知,共有32840(个)答案4088名世界网球顶级选手在上海大师赛上分成两组,每组各4人,分别进行单循环赛,每组决出前两名,再由每组的第一名与另一组的第二名进行淘汰赛,获胜者角逐冠、亚军,败者角逐第3,4名,大师赛共有_场比赛解析小组赛共有2C场比赛;半决赛和决赛共有224场比赛;根据分类加法计数原理共有2C416(场)比赛答案16二、解答题9电视台在“欢乐在今宵”节目中拿出两个信箱,其中放着竞猜中成绩优秀的观众来信,甲箱中有30封,乙箱中有20封,现由主持人抽奖确定幸运观众,若先从中确定一名幸运之星,再从两箱中各确定一名幸运观众,有多少种不同结果?解(1)幸运之星在甲箱中抽,选定幸运之星
17、,再在两箱内各抽一名幸运观众有30292017 400种(2)幸运之星在乙箱中抽取,有20193011 400种共有不同结果17 40011 40028 800(种)10“渐升数”是指每个数字比它左边的数字大的正整数(如1 458),若把四位“渐升数”按从小到大的顺序排列,求第30个“渐升数”解渐升数由小到大排列,形如12的渐升数共有65432121(个)形如134的渐升数共有5个形如135的渐升数共有4个故此时共有215430(个)因此从小到大的渐升数的第30个必为1 359.能力提升题组(建议用时:25分钟)一、填空题1如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在
18、每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为_解析可依次种A,B,C,D四块,当C与A种同一种花时,有431336种种法;当C与A所种花不同时,有432248种种法由分类加法计数原理,不同的种法种数为364884.答案842在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为_解析若4个位置的数字都不同的信息个数为1;若恰有3个位置的数字不同的信息个数为C;若恰有2个位置上的数字不同的信息个数为C.由分类加法计数原理知满足条件的信息个数为1CC11.答案113如
19、图所示,在A、B间有四个焊接点,若焊接点脱落,则可能导致电路不通,今发现A、B之间线路不通,则焊接点脱落的不同情况有_种解析四个焊点共有24种情况,其中使线路通的情况有:1、4都通,2和3至少有一个通时线路才通共有3种可能故不通的情况有24313(种)可能答案13二、解答题4用n种不同颜色为下列两块广告牌着色(如图所示),要求在A,B,C,D四个区域中相邻(有公共边的)区域不用同一种颜色(1)若n6,为着色时共有多少种不同的方法?(2)若为着色时共有120种不同的方法,求n.解(1)分四步:第1步涂A有6种不同的方法,第2步涂B有5种不同的方法,第3步涂C有4种不同的方法,第4步涂D有4种不同
20、的方法根据分步乘法计数原理,共有6544480种不同的方法(2)由题意,得n(n1)(n2)(n3)120,注意到nN*,可得n5.学生用书第157页第2讲排列与组合知 识 梳 理1排列与组合的概念名称定义排列从n个不同元素中取出m(mn)个不同元素按照一定的顺序排成一列组合合成一组2.排列数与组合数(1)从n个不同元素中取出m(mn)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数(2)从n个不同元素中取出m(mn)个元素的所有不同组合的个数,叫从n个不同元素中取出m个元素的组合数3排列数、组合数的公式及性质公式(1)An(n1)(n2)(nm1)(2)C(n,mN*,且
21、mn)特别地C1.性质(1)0!1;An!.(2)CC;CCC.辨 析 感 悟1排列与组合的基本概念、性质(1)所有元素完全相同的两个排列为相同排列()(2)两个组合相同的充要条件是其中的元素完全相同()(3)若组合式CC,则xm成立()2排列与组合的应用(4)5个人站成一排,其中甲、乙两人不相邻的排法有AAA72种()(5)(教材习题改编)由0,1,2,3这四个数字组成的四位数中,有重复数字的四位数共有343A168(个)()(6)(2013北京卷改编)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是4A96种()感悟
22、提升1一个区别排列与组合最根本的区别在于“有序”和“无序”取出元素后交换顺序,如果与顺序有关是排列,如果与顺序无关即是组合,如(1)忽视了元素的顺序2求解排列、组合问题的思路:“排组分清,加乘明确;有序排列,无序组合;分类相加,分步相乘”考点一排列应用题【例1】 4个男同学,3个女同学站成一排(1)3个女同学必须排在一起,有多少种不同的排法?(2)任何两个女同学彼此不相邻,有多少种不同的排法?(3)甲、乙两人相邻,但都不与丙相邻,有多少种不同的排法?解(1)3个女同学是特殊元素,共有A种排法;由于3个女同学必须排在一起,视排好的女同学为一整体,再与4个男同学排队,应有A种排法由分步乘法计数原理
23、,有AA720种不同排法(2)先将男生排好,共有A种排法,再在这4个男生的中间及两头的5个空档中插入3个女生有A种方法故符合条件的排法共有AA1 440种不同排法(3)先排甲、乙和丙3人以外的其他4人,有A种排法;由于甲、乙要相邻,故先把甲、乙排好,有A种排法;最后把甲、乙排好的这个整体与丙分别插入原先排好的4人的空档及两边有A种排法总共有AAA960种不同排法.学生用书第158页规律方法 (1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法(2)对相邻问题采用
24、捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法【训练1】 (1)(2014济南质检)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为_(结果可不化简)(2)(2013四川卷改编)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg alg b的不同值的个数是_解析(1)把一家三口看作一个排列,然后再排列这3家,所以有(3!)4种(2)由于lg alg blg(a0,b0),lg有多少个不同的值,只需看不同值的个数从1,3,5,7,9中任取两个作为有A种,又与相同,与相同,lg alg b的不同值的个数有A218
25、.答案(1)(3!)4(2)18考点二组合应用题【例2】 某课外活动小组共13人,其中男生8人,女生5人,并且男、女生各指定一名队长现从中选5人主持某种活动,依下列条件各有多少种选法?(1)只有一名女生;(2)两队长当选;(3)至少有一名队长当选;(4)至多有两名女生当选;(5)既要有队长,又要有女生当选解(1)一名女生,四名男生故共有CC350(种)(2)将两队长作为一类,其他11人作为一类,故共有CC165(种)(3)至少有一名队长含有两类:只有一名队长和两名队长故共有:CCCC825(种)或采用排除法:CC825(种)(4)至多有两名女生含有三类:有两名女生、只有一名女生、没有女生故选法
26、为:CCCCC966(种)(5)分两类:第一类女队长当选:C;第二类女队长不当选:CCCCCCC.故选法共有:CCCCCCCC790(种)规律方法 组合问题常有以下两类题型变化(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取(2)“至少”或“最多”含有几个元素的题型:若直接法分类复杂时,逆向思维,间接求解【训练2】 若从1,2,3,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有_解析满足题设的取法可分为三类:一是取四个奇数,在5个奇数1,3,5,7,9中,任意取4个,有C5(种);二
27、是两个奇数和两个偶数,在5个奇数中任取2个,再在4个偶数2,4,6,8中任取2个,有CC60(种);三是取4个偶数的取法有1种所以满足条件的取法共有560166(种)答案66种考点三排列、组合的综合应用【例3】 (1)(2013浙江卷)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有_种(用数字作答)(2)某校高二年级共有6个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为_审题路线(1)选出3个位置排特殊元素A、B、C,并把元素A、B作为元素集团进行排列;(2)可将4名同学分成两组(每组2人),再分配到两个班级解析(1
28、)先将A,B视为元素集团,与C先排在6个位置的三个位置上,有CAC种排法;第二步,排其余的3个元素有A种方法由分步乘法计数原理,共有CACA480种排法(2)法一将4人平均分成两组有C种方法,将此两组分配到6个班级中的2个班有A种所以不同的安排方法有CA种,即45种法二先从6个班级中选2个班级有C种不同方法,然后安排学生有CC种,故有CCAC种,即45种答案(1)480(2)45规律方法 (1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置)(2)
29、不同元素的分配问题,往往是先分组再分配在分组时,通常有三种类型:不均匀分组;均匀分组;部分均匀分组,注意各种分组类型中,不同分组方法的求法【训练3】 从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为_解析根据所选偶数为0和2分类讨论求解当选数字0时,再从1,3,5中取出2个数字排在个位与百位排成的三位数的奇数有CA6个当取出数字2时,再从1,3,5中取2个数字有C种方法然后将选中的两个奇数数字选一个排在个位,其余2个数字全排列排成的三位数的奇数有CAA12个由分类加法计数原理,共有18个三位数的奇数答案181熟练掌握:(1)排列数公式A;(2)组合数公式
30、C,这是正确计算的关键2解受条件限制的排列、组合题,通常有直接法(合理分类)和间接法(排除法)分类时标准应统一,避免出现重复或遗漏解组合应用题时,应注意“至少”、“至多”、“恰好”等词的含义3排列组合的综合应用问题,一般按先选再排,先分组再分配的处理原则对于分配问题,解题的关键是要搞清楚事件是否与顺序有关,对于平均分组问题更要注意顺序,避免计数的重复或遗漏 学生用书第159页易错辨析6实际意义理解不清导致计数错误【典例】 (2012山东卷改编)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为_错解第一类
31、,含有一张红色卡片,取出红色卡片有C种方法,再从黄、蓝、绿三色中选出两色并各取一张卡片有CCC种方法因此满足条件的取法有CCCC192种第二类,不含有红色卡片,从其余三色卡片中各取一张有CCC64种取法由分类计数原理,不同的取法共有19264256种答案256错因错解的原因是没有理解“3张卡片不能是同一种颜色”的含义,误认为“取出的三种颜色不同”正解第一类,含有1张红色卡片,不同的取法CC264(种)第二类,不含有红色卡片,不同的取法C3C22012208(种)由分类加法计数原理知,不同的取法共有264208472(种)答案472防范措施(1)准确理解题意,抓住关键字词的含义,“3张卡片不能是
32、同一种颜色”是指“两种颜色或三种颜色”都满足要求(2)选择恰当分类标准,避免重复遗漏,出现“至少、至多”型问题,注意间接法的运用【自主体验】1(2013大纲全国卷改编)有5人排成一行参观英模事迹展览,其中甲、乙两人不相邻的不同排法共有_种(用数字作答)解析先把除甲、乙外的3人全排列,有A种,再把甲、乙两人插入这3人形成的四个空位中的两个,共A种不同的方法所有不同的排法共有AA72(种)答案722如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有_个解析第一类:恰有三个相同的数字为1,选2,3,4中的一个数字排在十、百
33、、千位的一个位置上,有CA种方法,四位“好数”有9个第二类:相同的三个数字为2,3,4中的一个,这样的四位“好数”为2221,3331,4441共3个由分类加法计数原理,共有“好数”9312个答案12基础巩固题组(建议用时:40分钟)一、填空题1一个平面内的8个点,若只有4个点共圆,其余任何4点不共圆,那么这8个点最多确定的圆的个数为_解析从8个点中任选3个点有选法C种,因为有4点共圆所以减去C种再加1种,即有圆CC153个答案532若一个三位数的十位数字比个位数字和百位数字都大,称这个数为“伞数”现从1,2,3,4,5,6这六个数字中取3个数,组成无重复数字的三位数,其中“伞数”有_个解析分
34、类讨论:若十位数为6时,有A20个;若十位数为5时,有A12个;若十位数为4时,有A6个;若十位数为3时,有A2个,因此一共有40个答案403将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为_解析四名学生中有两名学生恰好分在一个班,共有CA种分法,而甲、乙被分在同一个班的有A种,所以不同的分法种数是CAA30.答案304某外商计划在4个候选城市中投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有_种解析若3个不同的项目投资到4个城市中的3个,每个城市一项,共A种方法;若3个不同的项目投资到4个城
35、市中的2个,一个城市一项、一个城市两项共CA种方法由分类加法计数原理知共ACA60(种)方法答案605一名老师和两名男生两名女生站成一排照相,要求两名女生必须站在一起且老师不站在两端,则不同站法的种数为_解析两名女生站一起有A种站法,她们与两个男生站一起共有AA种站法,老师站在他们的中间则共有AAC24(种)站法答案246(2013大纲全国卷)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有_种(用数字作答)解析依题意,所有的决赛结果有CCC6160(种)答案607(2014杭州调研)四名优等生保送到三所学校去,每所学校至少得一名,则不同的保送方案有_种解析分
36、两步:先将四名优等生分成2,1,1三组,共有C种;而后,对三组学生全排三所学校,即进行全排列,有A种依分步乘法计数原理,共有NCA36(种)答案368在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为偶数的三位数共有_个解析在1,2,3,4,5这五个数字中有3个奇数,2个偶数,要求三位数各位数字之和为偶数,则两个奇数一个偶数,符合条件的三位数共有CCA36(个)答案36二、解答题9四张卡片上分别标有数字“2”“0”“0”“9”,其中“9”可当“6”用,则由这四张卡片可组成不同的四位数有多少个?解先在后三位中选两个位置填写数字“0”有C种方法,再排另两张卡片有A种方法又数
37、字“9”可作“6”用,四张卡片组成不同的四位数有2CA12个10四个不同的小球放入编号为1,2,3,4的四个盒子中(1)若每个盒子放一球,则有多少种不同的放法?(2)恰有一个空盒的放法共有多少种?解(1)每个盒子放一球,共有A24种不同的放法;(2)法一先选后排,分三步完成第一步:四个盒子中选一只为空盒,有4种选法;第二步:选两球为一个元素,有C种选法;第三步:三个元素放入三个盒中,有A种放法故共有4CA144种放法法二先分组后排列,看作分配问题第一步:在四个盒子中选三个,有C种选法;第二步:将四个球分成2,1,1三组,有C(即)种分法;第三步:将三组分到选定的三个盒子中,有A种分法故共有CC
38、A144种分法能力提升题组(建议用时:25分钟)一、填空题1在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一或最后一步,程序B和C在实施时必须相邻,问实验顺序的编排方法共有_种解析程序A有A2种结果,将程序B和C看作元素集团与除A外的元素排列有AA48种,由分步加法计数原理,实验编排共有24896种方法答案962(2014济南调研)已知集合A5,B1,2,C1,3,4,从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为_解析(1)若从集合B中取元素2时,再从C中任取一个元素,则确定的不同点的个数为CA.(2)当从集合B中取元素1,且从C中取
39、元素1,则确定的不同点有C1C.(3)当从B中取元素1,且从C中取出元素3或4,则确定的不同点有CA个由分类加法计数原理,共确定不同的点有CACCA33(个)答案333(2013重庆卷)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是_(用数字作答)解析按选派的骨科医生的人数分类:选1名骨科医生,则有C(CCCCCC)360(种),选2名骨科医生,则有C(CCCC)210(种),选3名骨科医生,则有CCC20(种),骨科、脑外科和内科医生都至少有1人的选派方法种数是36021020590.答案590二、解答题4直线x1
40、,yx,将圆x2y24分成A,B,C,D四个区域,如图用五种不同的颜色给他们涂色,要求共边的两区域颜色互异,每个区域只涂一种颜色,共有多少种不同的涂色方法?解法一第1步,涂A区域有C种方法;第2步,涂B区域有C种方法;第3步,涂C区域和D区域:若C区域涂A区域已填过颜色,则D区域有4种涂法;若C区域涂A、B剩余3种颜色之一,即有C种涂法,则D区域有C种涂法故共有CC(4CC)260种不同的涂色方法法二共可分为三类:第1类,用五色中两种色,共有CA种涂法;第2类,用五色中三种色,共有CCCA种涂法;第3类,用五色中四种色,共有CA种涂法由分类加法计数原理,共有CACCCACA260(种)不同的涂
41、色方法.学生用书第160页第3讲二项式定理知 识 梳 理1二项式定理二项式定理(ab)nCanCan1bCanrbrCbn(nN*)二项展开式的通项公式Tr1Canrbr,它表示第r1项二项式系数二项展开式中各项的系数C,C,C2.二项式系数的性质(1)0kn时,C与C的关系是CC.(2)二项式系数先增后减中间项最大当n为偶数时,第1项的二项式系数最大,最大值为Cn;当n为奇数时,第项和项的二项式系数最大,最大值为Cn或Cn.(3)各二项式系数和:CCCC2n,CCCCCC2n1.辨 析 感 悟1二项式定理的理解(1)Canrbr是(ab)n的展开式中的第r项()(2)在(1x)9的展开式中系
42、数最大的项是第5项和第6项()(3)(教材习题改编)在6的二项展开式中,常数项为160.()2二项式系数的性质(4)(ab)n的展开式中某一项的二项式系数与a,b无关()(5)若(3x1)7a7x7a6x6a1xa0,则a7a6a1的值为128.()(6)(2013安徽卷改编)若n的展开式中,仅有第5项的二项式系数最大,且x4的系数为7,则实数a.()感悟提升1二项式定理(ab)nCanCan1bCanrbrCbn(nN*)揭示二项展开式的规律,一定牢记通项公式Tr1Canrbr是展开式的第r1项,不是第r项,如(1)2二项式系数与展开式项的系数的异同一是在Tr1Canrbr中,C是该项的二项
43、式系数,与该项的(字母)系数是两个不同的概念,前者只指C,而后者是字母外的部分,前者只与n和r有关,恒为正,后者还与a,b有关,可正可负,如(2)就是混淆两个概念的区别二是二项式系数的最值与增减性与指数n的奇偶性有关,当n为偶数,中间一项的二项式系数最大,如(6);当n为奇数时,中间两项的二项式系数相等,且同时取得最大值.考点一通项公式及其应用【例1】 (1)(2013浙江卷)设二项式5的展开式中常数项为A,则A_.(2)(2013新课标全国卷改编)已知(1ax)(1x)5的展开式中x2的系数为5,则a等于_解析(1)Tr1C()5rrC(1)rx,令r0,得r3,AC10.(2)(1ax)(
44、1x)5(1x)5ax(1x)5,又(1x)5中含有x与x2的项为T2Cx,T3Cx2.展开式中x2的系数为CaC5,a1.答案(1)10(2)1规律方法 (1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且nr,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解【训练1】 (1)(2013大纲全国卷改编)(1x)8(1y)4的展开式中x2y2的系数是_(2)
45、设二项式6(a0)的展开式中x3的系数为A,常数项为B,若B4A,则a的值是_解析(1)(1x)8的通项为Cxk,(1y)4的通项为Cyt,(1x)8(1y)4的通项为CCxkyt,令k2,t2,得x2y2的系数为CC168.(2)6展开式的通项Tr1(a)rCx6r,A(a)2C,B(a)4C,由B4A,得(a)4C4(a)2C,解之得a2.又a0,所以a2.答案(1)168(2)2学生用书第161页考点二二项式系数的性质与各项系数和【例2】 (1)(2014青岛模拟)设(1x)na0a1xa2x2anxn,若a1a2an63,则展开式中系数最大的项是_(2)若n的展开式中第3项与第7项的二
46、项式系数相等,则该展开式中的系数为_审题路线(1)先赋值求a0及各项系数和,进而求得n值,再运用二项式系数性质与通项公式求解(2)根据二项式系数性质,由CC,确定n的值,求出的系数解析(1)(1x)na0a1xa2x2anxn,令x0,得a01.令x1,则(11)na0a1a2an64,n6,又(1x)6的展开式二项式系数最大项的系数最大,(1x)6的展开式系数最大项为T4Cx320x3.(2)由题意知,CC,n8.Tr1Cx8rrCx82r,当82r2时,r5,的系数为CC56.答案(1)20x3(2)56规律方法 (1)第(1)小题求解的关键在于赋值,求出a0与n的值;第(2)小题在求解过
47、程中,常因把n的等量关系表示为CC,而求错n的值(2)求解这类问题要注意:区别二项式系数与展开式中项的系数,灵活利用二项式系数的性质;根据题目特征,恰当赋值代换,常见的赋值方法是使得字母因式的值或目标式的值为1,1.【训练2】 (1)二项式n的展开式中只有第6项的二项式系数最大,则展开式中常数项是_(2)若(12x)2014a0a1xa2x2a2014x2014(xR),则的值为_解析(1)由二项式系数的性质,得n10,Tr1C()10rr2rCx5r,令5r0,则r2,从而T34C180.(2)令x0,得a0(10)20131.令x,则a00,1.答案(1)180(2)1考点三二项式定理的应
48、用【例3】 (2012湖北卷改编)设aZ,且0a0时,ff(x)表达式的展开式中常数项为_解析当x0时,f(x)0,所以ff(x)f()6,Tr1Cx(6r)(x)r(1)rCx3,由r30,得r3.所以ff(x)表达式的展开式中常数项为(1)3C20.答案202若将函数f(x)x5表示为f(x)a0a1(1x)a2(1x)2a5(1x)5,其中a0,a1,a2,a5为实数,则a3_.解析f(x)x5(1x1)5,它的通项为Tr1C(1x)r(1)5r,T4C(1)2(1x)310(1x)3,a310.答案103若(1xx2)6a0a1xa2x2a12x12,则a2a4a12_.解析令x1,则
49、a0a1a2a1236,令x1,则a0a1a2a121,a0a2a4a12.令x0,则a01,a2a4a121364.答案364二、解答题4已知(a21)n展开式中的各项系数之和等于5的展开式的常数项,而(a21)n的展开式的系数最大的项等于54,求正数a的值解5展开式的通项为Tr1C5rr5rCx,令205r0,得r4,故常数项T5C16.又(a21)n展开式的各项系数之和为2n,由题意得2n16,n4.(a21)4展开式中系数最大的项是中间项T3,从而C(a2)254,解得a.方法强化练计数原理(对应学生用书P359)(建议用时:60分钟)一、填空题1A,B,C,D,E五人并排站成一排,如
50、果B必须站在A的右边(A,B可以不相邻),那么不同的排法共有_解析可先排C,D,E三人,共A种排法,剩余A、B两人只有一种排法,由分步乘法计数原理满足条件的排法共A60种答案60种2(2014重庆质检)(13x)n(其中nN且n6)的展开式中x5与x6的系数相等,则n等于_解析(13x)n的展开式中含x5的项为C(3x)5C35x5,展开式中含x6的项为C36x6.由两项的系数相等得C35C36,解得n7.答案73(2014济南调研)只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,则这样的四位数有_解析由题意知,1,2,3中必有某一个数字重复使用2次,第
51、一步确定谁被使用2次,有3种方法;第二步把这2个相等的数放在四位数不相邻的两个位置上,也有3种方法;第三步将余下的2个数放在四位数余下的2个位置上,有2种方法故共可组成33218个不同的四位数答案18个4组合式C2C4C8C(2)nC的值等于_解析在(1x)nCCxCx2Cxn中,令x2,得原式(12)n(1)n.答案(1)n5若n的展开式中第3项的二项式系数是15,则展开式中所有项系数之和为_解析由题意知C15,所以n6,则n6,令x1得所有项系数之和为6.答案6(2014杭州检测)甲、乙两人计划从A,B,C三个景点中各选择两个游玩,则两人所选景点不全相同的选法共有_解析甲、乙各选两个景点有
52、CC9种方法,其中,入选景点完全相同的有3种满足条件要求的选法共有936(种)答案6种7若(x1)8a0a1(1x)a2(1x)2a8(1x)8,则a6_.解析(x1)8(x1)28a0a1(1x)a2(1x)2a8(1x)8,a6C(2)24C112.答案1128(2014长沙模拟)已知x,y满足(xZ,yZ),每一对整数(x,y)对应平面上一个点,则过这些点中的其中3个点可作不同的圆的个数为_解析如图所示,阴影中的整点部分为x,y满足的区域,其中整数点(x,y)共有8个,从中任取3个有C56种取法其中三点共线的有1C11(种)故可作不同的圆的个数为45.答案459(2014广州调研)已知a
53、2cosdx,则二项式5的展开式中x的系数为_解析a2cosdx2sin2,则55,Tr1Cx2(5r)r(2)rCx103r.令103r1,得r3.展开式中x的系数为(2)3C80.答案8010(2014衡水中学模拟)用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是_解析先将3,5排列,有A种排法;再将4,6插空排列,有2A种排法;最后将1,2插入3,4,5,6形成的空中,有C种排法由分步乘法计数原理知,共有A2AC40种答案4011.n的展开式中各项系数之和为729,则该展开式中二项式系数最大的项等于_解析依题意,令x
54、1,有3n729,则n6,展开式第4项的二项式系数最大,则T4C(2x)33160x2.答案160x212(2014郑州调研)某商店要求甲、乙、丙、丁、戊五种不同的商品在货架上排成一排,其中甲、乙两种必须排在一起,而丙、丁两种不能排在一起,不同的排法共有_种解析甲、乙作为元素集团,内部有A种排法,“甲乙”元素集团与“戊”全排列有A种排法将丙、丁插在3个空档中有A种方法由分步计数原理,共有AAA24种排法答案2413(2013新课标全国卷)设m为正整数,(xy)2m展开式的二项式系数的最大值为a,(xy)2m1展开式的二项式系数的最大值为b,若13a7b,则m_.解析由二项式系数的性质,得aC,
55、bCC,又13a7b,因此13C7C,解得m6.答案614甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是_(用数字作答)解析当每个台阶上各站1人时有AC种站法,当两个人站在同一个台阶上时有CCC种站法,因此不同的站法种数有ACCCC210126336(种)答案33615(2014无锡质检)(x22)5的展开式的常数项是_解析二项式5展开式的通项为:Tr1C5r(1)rCx2r10(1)r.当2r102,即r4时,有x2Cx2(1)4C(1)45;当2r100,即r5时,有2Cx0(1)52.展开式中的常数项为523.答案316将6位
56、志愿者分成4个组,其中两个组各2人,另两个组各1人分赴世博会的四个不同场馆服务,不同的分配方案种数有_解析将6位志愿者分为2名,2名,1名,1名四组,有15645种分组方法将四组分赴四个不同场馆有A种方法根据分步乘法计数原理,不同的分配方案有45A1 080种方法答案1 080二、解答题17已知n,(1)若展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大项的系数;(2)若展开式前三项的二项式系数和等于79,求展开式中系数最大的项解(1)CC2C,n221n980.n7或n14,当n7时,展开式中二项式系数最大的项是T4和T5.T4的系数为C423,T5的系数为C3
57、2470,当n14时,展开式中二项式系数最大的项是T8.T8的系数为C7273 432.(2)CCC79,n2n1560.n12或n13(舍去)设Tk1项的系数最大,1212(14x)12,9.4k10.4,k10.展开式中系数最大的项为T11,T11C2210x1016 896x10.18(1)3人坐在有八个座位的一排上,若每人的左右两边都要有空位,则不同坐法的种数为多少?(2)现有10个保送上大学的名额,分配给7所学校,每校至少有1个名额,问名额分配的方法共有多少种?解(1)由题意知有5个座位都是空的,我们把3个人看成是坐在座位上的人,往5个空座的空档插由于这5个空座位之间共有4个空,3个人去插,共有A24种(2)法一每个学校至少一个名额,则分去7个,剩余3个名额分到7所学校的方法种数就是要求的分配方法种数分类:若3个名额分到一所学校有7种方法;若分配到2所学校有C242种;若分配到3所学校有C35种共有7423584种方法法二10个元素之间有9个间隔,要求分成7份,相当于用6块档板插在9个间隔中,共有C84种不同方法所以名额分配的方法共有84种.