ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:342KB ,
资源ID:112973      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-112973-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《创新设计》2015高考数学(苏教文)一轮配套文档:第7篇 第2讲 一元二次不等式及其解法.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《创新设计》2015高考数学(苏教文)一轮配套文档:第7篇 第2讲 一元二次不等式及其解法.doc

1、第2讲一元二次不等式及其解法知 识 梳 理1一元二次不等式的解法(1)将不等式的右边化为零,左边化为二次项系数大于零的不等式ax2bxc0(a0)或ax2bxc0(a0)(2)计算相应的判别式(3)当0时,求出相应的一元二次方程的根(4)利用二次函数的图象与x轴的交点确定一元二次不等式的解集2三个“二次”间的关系判别式b24ac000二次函数yax2bxc (a0)的图象续表一元二次方程ax2bxc0(a0)的根有两相异实根x1,x2(x1x2)有两相等实根x1x2没有实数根ax2bxc0(a0)的解集x|xx2或xx1Rax2bxc0(a0)的解集x|x1xx2辨 析 感 悟1对一元二次不等

2、式的解法的理解(1)(教材习题改编)不等式x25x60的解集为x|x6,或x1()(2)若不等式ax2bxc0的解集为(x1,x2),则必有a0.()(3)若不等式ax2bxc0的解集是(,x1)(x2,),则方程ax2bxc0的两个根是x1和x2.()(4)若方程ax2bxc0(a0)没有实数根,则不等式ax2bxc0的解集为R.()2对一元二次不等式恒成立问题的认识(5)不等式ax2bxc0在R上恒成立的条件是a0且b24ac0.()(6)若关于x的不等式ax2x10的解集为R,则a.()(7)若不等式x2ax10对x恒成立,则a的最小值为.()感悟提升三个防范一是当0时,不等式ax2bx

3、c0(a0)的解集为R还是,要注意区别,如(4)中当a0时,解集为R;当a0时,解集为.二是对于不等式ax2bxc0求解时不要忘记讨论a0时的情形,如(5)中当ab0,c0时,不等式ax2bxc0在R上也是恒成立的三是解含参数的一元二次不等式,可先考虑因式分解,再对根的大小进行分类讨佛论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.考点一一元二次不等式的解法【例1】 (2014大连模拟)已知函数f(x)(ax1)(xb),如果不等式f(x)0的解集是(1,3),则不等式f(2x)0的解集是_解析由f(x)0,得ax2(ab1)xb0,又其解集是(1,3),a0.且解得a1或,a1

4、,b3.f(x)x22x3,f(2x)4x24x3,由4x24x30,得4x24x30,解得x或x.答案规律方法 解一元二次不等式时,当二次项系数为负时要先化为正,再根据判别式符号判断对应方程根的情况,然后结合相应二次函数的图象写出不等式的解集【训练1】 (2013江西卷改编)使不等式x0时,原不等式可化为x21x3,解得x,当x0时,原不等式可化为解得x1.答案(,1)考点二含参数的一元二次不等式的解法【例2】 (2013烟台期末)解关于x的不等式:ax222xax(aR)解原不等式可化为ax2(a2)x20.当a0时,原不等式化为x10,解得x1.当a0时,原不等式化为(x1)0,解得x或

5、x1.当a0时,原不等式化为(x1)0.当1,即a2时,解得1x;当1,即a2时,解得x1满足题意;当1,即a2,解得x1.综上所述,当a0时,不等式的解集为x|x1;当a0时,不等式的解集为;当2a0时,不等式的解集为;当a2时,不等式的解集为x|x1;当a2时,不等式的解集为.规律方法 解含参数的一元二次不等式分类讨论的依据(1)二次项中若含有参数应讨论是小于0,等于0,还是大于0,然后将不等式转化为二次项系数为正的形式(2)当不等式对应方程的根的个数不确定时,讨论判别式与0的关系(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式【训练2】 (1)(

6、2013重庆卷改编)关于x的不等式x22ax8a20)的解集为(x1,x2),且x2x115,则a等于_(2)解关于x的不等式(1ax)21.(1)解析法一不等式x22ax8a20的解集为(x1,x2),x1,x2是方程x22ax8a20的两根由根与系数的关系知x2x115,又a0,a.法二由x22ax8a20,得(x2a)(x4a)0,a0,不等式x22ax8a20的解集为(2a,4a),又不等式x22ax8a20的解集为(x1,x2),x12a,x24a.x2x115,4a(2a)15,解得a.答案(2)解由(1ax)21,得a2x22ax0,即ax(ax2)0,当a0时,x.当a0时,由

7、ax(ax2)0,得a2x0,即0x.当a0时,x0.综上所述:当a0时,不等式解集为空集;当a0时,不等式解集为;当a0时,不等式解集为.考点三一元二次不等式恒成立问题【例3】 已知函数f(x)mx2mx1.(1)若对于xR,f(x)0恒成立,求实数m的取值范围;(2)若对于x1,3,f(x)5m恒成立,求实数m的取值范围解(1)由题意可得m0或m0或4m04m0.故m的取值范围是(4,0(2)法一要使f(x)m5在1,3上恒成立,即m2m60在x1,3上恒成立令g(x)m2m6,x1,3当m0时,g(x)在1,3上是增函数,所以g(x)maxg(3)7m60,所以m,则0m;当m0时,60

8、恒成立;当m0时,g(x)在1,3上是减函数,所以g(x)maxg(1)m60,所以m6,所以m0.综上所述:m的取值范围是.法二f(x)m5m(x2x1)6,x2x10,m对于x1,3恒成立,只需求的最小值,记g(x),x1,3,记h(x)2,h(x)在x1,3上为增函数则g(x)在1,3上为减函数,g(x)ming(3),m.所以m的取值范围是.规律方法 (1)不等式ax2bxc0的解是全体实数(或恒成立)的条件是当a0时,b0,c0;当a0时,不等式ax2bxc0的解是全体实数(或恒成立)的条件是当a0时,b0,c0;当a0时,(2)含参数的一元二次不等式在某区间内恒成立问题,常有两种处

9、理方法:一是利用二次函数区间上的最值来处理;二是先分离出参数,再去求函数的最值来处理,一般后者比较简单【训练3】 (1)若关于x的不等式ax22x20在R上恒成立,则实数a的取值范围是_(2)(2014淄博模拟)若不等式(aa2)(x21)x0对一切x(0,2恒成立,则a的取值范围是_解析(1)当a0时,原不等式可化为2x20,其解集不为R,故a0不满足题意,舍去;当a0时,要使原不等式的解集为R,只需解得a.综上,所求实数a的取值范围是.(2)x(0,2,a2a.要使a2a在x(0,2时恒成立,则a2amax,由基本不等式得x2,当且仅当x1时,等号成立,即max.故a2a,解得a或a.答案

10、(1)(2)1解不等式的基本思路是等价转化,分式不等式整式化,使要求解的不等式转化为一元一次不等式或一元二次不等式,进而获得解决2当判别式0时,ax2bxc0(a0)解集为R;ax2bxc0(a0)解集为.二者不要混为一谈3含参数的不等式的求解,注意选好分类标准,避免盲目讨论4对于恒成立问题,常用到以下两个结论:(1)af(x)恒成立af(x)max;(2)af(x)恒成立af(x)min.思想方法6数形结合思想在“三个二次”间关系的应用【典例】 (2012福建卷)对于实数a和b,定义运算“*”;a*b 设f(x)(2x1)*(x1),且关于x的方程f(x)m(mR)恰有三个互不相等的实数根x

11、1,x2,x3,则x1x2x3的取值范围是_解析由定义可知:f(x)(2x1)*(x1)f(x)作出函数f(x)的图象,如图所示由图可知,当0m时,f(x)m(mR)恰有三个互不相等的实数根x1,x2,x3.不妨设x1x2x3,易知x20,且x2x321,0x2x32,即0x2x3.令解得x或(舍去)x10,x10,0x1x2x3,x1x2x30.答案反思感悟 “三个二次”间关系,其实质是抓住二次函数yax2bxc(a0)的图象与横轴的交点、二次不等式ax2bxc0(a0)的解集的端点值、二次方程ax2bxc0(a0)的根是同一个问题解决与之相关的问题时,可利用函数与方程思想、化归思想将问题转

12、化,结合二次函数的图象来解决【自主体验】1已知函数f(x)则满足不等式f(1x2)f(2x)的x的取值范围是_解析由函数f(x)的图象可知(如下图),满足f(1x2)f(2x)分两种情况:0x1;1x0.综上可知:1x1.答案(1,1)2已知函数f(x)若函数g(x)f(x)m有3个零点,则实数m的取值范围是_解析画出f(x)的图象,如图由函数g(x)f(x)m有3个零点,结合图象得:0m1,即m(0,1)答案(0,1)基础巩固题组(建议用时:40分钟)一、填空题1(2014长春调研)已知集合Px|x2x20,Qx|log2(x1)1,则(RP)Q_.解析依题意,得Px|1x2,Qx|1x3,

13、则(RP)Q(2,3答案(2,32(2014沈阳质检)不等式x2ax40的解集不是空集,则实数a的取值范围是_解析不等式x2ax40的解集不是空集,只需a2160,a4或a4.答案(,4)(4,)3(2013南通二模)已知f(x)则不等式f(x)f(4)的解集为_解析f(4)2,不等式即为f(x)2.当x0时,由2,得0x4;当x0时,由x23x2,得x2,因此x0.综上,f(x)f(4)的解集为x|x4答案x|x2x的解集为(1,3)(1)若方程f(x)6a0有两个相等的根,求f(x)的解析式;(2)若f(x)的最大值为正数,求a的取值范围解(1)f(x)2x0的解集为(1,3),f(x)2xa(x1)(x3),且a0,因而f(x)a(x1)(x3)2xax2(24a)x3a.由方程f(x)6a0,得ax2(24a)x9a0.因为方程有两个相等的根,所以(24a)24a9a0,即5a24a10,解得a1或a.由于a0,舍去a1,将a代入,得f(x)x2x.(2)由f(x)ax22(12a)x3aa2及a0,可得f(x)的最大值为.由解得a2或2a0.故当f(x)的最大值为正数时,实数a的取值范围是(,2)(2,0).

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3