1、第2课时圆锥曲线中的范围、最值问题技法阐释圆锥曲线中的范围、最值问题的求解常用的三种方法(1)函数法:用其他变量表示该参数,建立函数关系,利用求函数的单调性求解(2)不等式法:根据题意建立含参数的不等式,通过解不等式求参数范围(3)判别式法:建立关于某变量的一元二次方程,利用判别式求参数的范围高考示例思维过程(2019全国卷)已知点A(2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为.记M的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PEx轴,垂足为E,连接QE并延长交C于点G.证明:PQG是直角三角形;求PQ
2、G面积的最大值.所以PQG的面积设tk,则由k0得t2,当且仅当k1时取等号因为S在2,)单调递减,所以当t2,即k1时,S取得最大值,最大值为.因此,PQG面积的最大值为. 技法一判别式法求范围典例1已知椭圆的一个顶点A(0,1),焦点在x轴上,离心率为.(1)求椭圆的标准方程;(2)设直线ykxm(k0)与椭圆交于不同的两点M,N.当|AM|AN|时,求m的取值范围思维流程解(1)设椭圆的标准方程为1(ab0),联立解得故椭圆的标准方程为y21.(2)设P(x0,y0)为弦MN的中点,M(x1,y1),N(x2,y2)联立得(4k21)x28kmx4(m21)0.则x1x2,x1x2.(8
3、km)216(4k21)(m21)0,所以m214k2.所以x0,y0kx0m.所以kAP.又|AM|AN|,所以APMN,则,即3m4k21.把代入得m23m,解得0m3.由得k20,解得m.综上可知,m的取值范围为.点评:本例在求解中巧用|AM|AN|得出APMN,从而建立m与k的等量关系,回代由判别式0得出的m与k的不等关系,进而得出参数m的取值范围 技法二利用函数性质法求最值(范围)典例2已知直线l:xy10与焦点为F的抛物线C:y22px(p0)相切(1)求抛物线C的方程;(2)过焦点F的直线m与抛物线C分别相交于A,B两点,求A,B两点到直线l的距离之和的最小值思维流程解(1)直线
4、l:xy10与抛物线C:y22px(p0)相切,联立消去x得y22py2p0,从而4p28p0,解得p2或p0(舍)抛物线C的方程为y24x.(2)由于直线m的斜率不为0,可设直线m的方程为tyx1,A(x1,y1),B(x2,y2)联立消去x得y24ty40,0,y1y24t,即x1x24t22,线段AB的中点M的坐标为(2t21,2t)设点A到直线l的距离为dA,点B到直线l的距离为dB,点M到直线l的距离为d,则dAdB2d22|t2t1|2,当t时,A,B两点到直线l的距离之和最小,最小值为.点评:本例的求解有两大亮点,一是直线m的设法:tyx1,避免了讨论斜率不存在的情形;另一个是将
5、dAdB的最值问题巧妙的转化为AB的中点M到直线l的最值问题,在转化中抛物线的定义及梯形中位线的性质起了关键性作用 技法三利用不等式法求最值(范围)典例3已知点A(0,2),椭圆E:1(ab0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点(1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点,当OPQ的面积最大时,求l的方程思维流程解(1)设F(c,0),由条件知,得c.又,所以a2,b2a2c21.故E的方程为y21.(2)当lx轴时不合题意,故设l:ykx2,P(x1,y1),Q(x2,y2)将ykx2代入y21,得(14k2)x216kx120.当16(4k23)0,即k2时,x1,2.从而|PQ|x1x2|.又点O到直线PQ的距离d.所以OPQ的面积SOPQd|PQ|.设t,则t0,SOPQ1.当且仅当t2,即k时等号成立,且满足0.所以当OPQ的面积最大时,l的方程为2yx40.点评:基本不等式求最值的五种典型情况分析(1)s(先换元,注意“元”的范围,再利用基本不等式)(2)s(基本不等式)(3)s(基本不等式)(4)s(先分离参数,再利用基本不等式)(5)s(上下同时除以k2,令tk换元,再利用基本不等式)