1、利用导数解决函数的零点问题建议用时:45分钟1(2019全国卷)已知函数f(x)ln x.(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;(2)设x0是f(x)的一个零点,证明曲线yln x在点A(x0,ln x0)处的切线也是曲线yex的切线解(1)f(x)的定义域为(0,1)(1,)因为f(x)0,所以f(x)在(0,1),(1,)单调递增因为f(e)10,f(e2)20,所以f(x)在(1,)有唯一零点x1(ex1e2),即f(x1)0.又01,fln x1f(x1)0,故f(x)在(0,1)有唯一零点.综上,f(x)有且仅有两个零点(2)因为eln x0,故点B在曲线yex
2、上由题设知f(x0)0,即ln x0,连接AB,则直线AB的斜率k.曲线yex在点B处切线的斜率是,曲线yln x在点A(x0,ln x0)处切线的斜率也是,所以曲线yln x在点A(x0,ln x0)处的切线也是曲线yex的切线2(2019武汉调研)已知函数f(x)exax1(aR)(e2.718 28是自然对数的底数)(1)求f(x)的单调区间;(2)讨论g(x)f(x)在区间0,1上零点的个数解(1)因为f(x)exax1,所以f(x)exa,当a0时,f(x)0恒成立,所以f(x)的单调递增区间为(,),无单调递减区间;当a0时,令f(x)0,得xln a,令f(x)0,得xln a,
3、所以f(x)的单调递减区间为(,ln a),单调递增区间为(ln a,)(2)令g(x)0,得f(x)0或x,先考虑f(x)在区间0,1上的零点个数,当a1时,f(x)在(0,)上单调递增且f(0)0,所以f(x)在0,1上有一个零点;当ae时,f(x)在(,1)上单调递减,所以f(x)在0,1上有一个零点;当1ae时,f(x)在(0,ln a)上单调递减,在(ln a,1)上单调递增,而f(1)ea1,当ea10,即1ae1时,f(x)在0,1上有两个零点,当ea10,即e1ae时,f(x)在0,1上有一个零点当x时,由f0得a2(1),所以当a1或ae1或a2(1)时,g(x)在0,1上有
4、两个零点;当1ae1且a2(1)时,g(x)在0,1上有三个零点3(2019辽宁锦州联考)已知函数f(x)exaxa(aR且a0)(1)若函数f(x)在x0处取得极值,求实数a的值;并求此时f(x)在2,1上的最大值;(2)若函数f(x)不存在零点,求实数a的取值范围解(1)由f(x)exaxa,得f(x)exa.因为函数f(x)在x0处取得极值,所以f(0)e0a0,所以a1.经检验,a1,符合题意,所以f(x)ex1.所以当x(,0)时,f(x)0,f(x)单调递增易知f(x)在2,0)上单调递减,在(0,1上单调递增,且f(2)3,f(1)e,f(2)f(1),所以f(x)在2,1上的最大值为3.(2)f(x)exa,由于ex0,当a0时,f(x)0,f(x)是增函数,且当x1时,f(x)exa(x1)0.当x0时,取x,则f1aa0,所以函数f(x)存在零点,不满足题意当a0时,令f(x)exa0,xln(a)当x(,ln(a)时,f(x)0,f(x)单调递增,所以xln(a)时,f(x)取得最小值函数f(x)不存在零点,等价于f(ln(a)eln(a)aln(a)a2aaln(a)0,解得e2a0.综上所述,所求实数a的取值范围是(e2,0).