1、训练目标(1)函数知识的灵活运用;(2)转化与化归思想在函数中的应用;(3)审题能力的培养.训练题型(1)函数新定义问题;(2)抽象函数问题.解题策略(1)对新定义进行转换、化为已学过的知识后求解;(2)抽象函数可对变量适当赋值.1(2015湖北改编)已知符号函数sgn xf (x)是R上的增函数,g(x)f (x)f (ax)(a1),则下列结论正确的是_sgng (x)sgn x;sgng (x)sgnf (x);sgng (x )sgn x;sgng (x)sgnf (x)2若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为yx2,值域为1,9的
2、“同族函数”共有_个3(2015滨州二模)具有性质f ()f (x)的函数,我们称为满足“倒负”交换的函数下列函数:yx;yx;y其中满足“倒负”交换的函数是_4若f (x)的定义域为a,b,值域为a,b (ab),则称函数f (x)是a,b上的“四维光军”函数设g(x)x2x是1,b上的“四维光军”函数,则常数b的值为_5若实数t满足f (t)t,则称t是函数f (t)的一个次不动点设函数f (x)ln x与函数g(x)ex(其中e为自然对数的底数)的所有次不动点之和为m,则m_.6定义:函数yf (x),对给定的正整数k,若在其定义域内存在实数x0,使得f (x0k)f (x0)f (k)
3、,则称函数f (x)为“k性质函数”若函数f (x)lg为“2性质函数”,则实数a的取值范围是 7用x表示不大于实数x的最大整数,方程lg2xlg x20的实根个数是_8(2015吉林白山4月模拟)已知定义在R上的函数yf (x)对于任意的x都满足f (x1)f (x),当1x0.回答下列问题:(1)判断f (x)在(1,1)上的奇偶性,并说明理由;(2)判断函数f (x)在(0,1)上的单调性,并说明理由;(3)若f (),试求f ()f ()f ()的值答案解析1解析因为a1,所以当x0时,xax,因为f (x)是R上的增函数,所以f (x)f(ax),所以g(x)f (x)f (ax)0
4、,sgng (x )1sgn x;同理可得当x0,sgng (x)1sgn x;当x0时,g (x)0,sgng (x )0sgn x也成立故正确29解析函数yx2,值域为1,9,可知自变量x从1,1,1中任取一个,再从3,3,3中任取一个构成函数,故满足条件的“同族函数”有339个3解析f ()x(x)f (x),故该函数为“倒负”交换的函数;f ()xf (x),故该函数不是“倒负”交换的函数;当x1时,1,显然此时f (x)0,f ()0,故有f ()f (x);当0x1,此时f (x)x,f ()x,故有f ()f (x);当x1时,01,解得b3.50解析在同一直角坐标系中画出函数y
5、ln x,yx的大致图象,其图象有唯一的公共点(t,t),即有ln tt,ett,于是点(t,t)是函数yex,yx的图象的交点,因此函数f (x)ln x与g(x)ex的次不动点必是成对出现的,且两者互为相反数,所以m0.61510,1510 解析由条件得lglglg,即(a0),化简得(a5)x4ax05a50,当a5时,x01;当a5时,由0,得16a220(a5)(a1)0,即a230a250,所以1510a1510.综上,a1510,1510 73解析令lg xt,则得t22t ,作yt22与yt 的图象,知t1,t2,及1t2内有一个解,当1t1,则h(5)loga55.若0a1,
6、则h(5)loga51,即02,所以fpf (1)fp(2)2,因为f (1)22,所以fp(1)f (1)2,所以f fp(1)f (2)7,所以fp f (1)f fp (1),故不正确;经验证都正确10解(1)f (x)在(1,1)上是奇函数,理由如下:令xy0f (0)0,令yx,则f (x)f (x)0f (x)f (x),f (x)在(1,1)上是奇函数(2)f (x)在(0,1)上单调递减理由如下:设0x1x21,则f (x1)f (x2)f (x1)f (x2)f (),而x1x20,0x1x210,故10,即当0x1x2f (x2),f (x)在(0,1)上单调递减(3)由于f ()f ()f ()f ()f ()f ()同理,f ()f ()f (),f ()f ()f (),f ()f ()f ()2f ()21.