1、莆田一中高一数学练习题31在各项都为正数的等比数列an中,a12,a6a1a2a3,则公比q的值为()ABC2D32若等差数列an的前n项和为Sn,已知a58,S36,则a9()A8B12C16D243已知数列an的前n项和为Sn,且满足an22an1an,a54a3,则S7()A10B12C14D204等比数列an中,a21,a864,则a5()A8 B12C8或8D12或125如果数列an满足a12,an1an2n,则数列an的通项公式an_.6设等差数列an的前n项和为Sn,若a2a46,则S5等于()A10B12C15D307已知数列an满足a10,an1,则a2014等于()A0B1
2、CD28已知各项都不为0的等差数列an满足a42a3a80,数列bn是等比数列,且b7a7,则b2b12等于()A1B2C4D89已知数列an的前n项和为Sn,且Snan2n(nN*),则下列数列中一定是等比数列的是()AanBan1 Can2 Dan2 10设等差数列an的前n项和为Sn,且满足a12,a2a4a615,则S10 _11已知等比数列an的前n项和为Sn ,若a2a3 a6 ,S5=62,则a1=_.12在数列an中,a12,an14an3n1,nN*.则an_.13已知an是一个公差大于0的等差数列,且满足a3a655,a2a716.(1)求数列an的通项公式;(2)若数列a
3、n和数列bn满足等式:an(n为正整数),求数列bn的前n项和Sn.14已知数列an的首项a11,其前n项和为Sn,且对任意正整数n都有n,an,Sn成等差数列.(1)求证:数列Snn2成等比数列; (2)求数列an的通项公式.15已知正项数列an,a11,ana2an1.(1)求证:数列log2(an1)为等比数列;(2)设bnnlog2(an1),数列bn的前n项和为Sn,求证:1Sn4.Com练习3解析:1C解析 由a6a1a2a3,得a1q5aq3,即q2a.因为等比数列的各项都为正数,所以qa12.2C解析 设数列an的公差为d,则a5a14d8,S33a1d6,解得a10,d2,所
4、以a908216.3C解析 由an22an1an得,数列an为等差数列由a54a3,得a5a34a1a7,所以S714.4C解析 设数列an的公比为q.易知,a5是a2和a8的等比中项,所以aa2a816464,又由于q3,q的符号不确定,故a5与a2符号可能相同,也可能不相同,因此a58.5n2n2解析 由于an1an2n,所以a2a121,a3a222,anan12(n1),将这n1个等式叠加,整理得ana1212(n1)n(n1),故ann2n2.6C解析 S515.7B解析 经验算得,a10,a21,a3,a42,a50,故可知数列an具有周期性,且其周期为4,所以a2014a4503
5、2a21.8C解析 因为a42a3a80,所以2aa43a84a7,所以a72,所以b72,所以b2 b12 b4.9C解析 由Snan2n,可得Sn1an12(n1)(n2),由得2anan12,即an2(an12),可知数列an2为等比数列1065解析 设数列an的公差为d,则a2a4a63a19d69d15,得d1,所以S10102165.112解析 设公比为q.由a2a3a6得(a1q4)22a1q2a1q5,所以q2.又S562,解得a12.124n1n解析 由题设an14an3n1,nN*,得an1(n1)4(ann),nN*.又a111,所以数列是首项为1,且公比为4的等比数列,
6、所以ann4n1,所以an4n1n.13解:(1) an是一个公差大于0的等差数列,且满足a3a655,a2a716.又公差d0,故d2,a11.an2n1.(2)n2时,2n1(2n3)2,bn2n1,又a11,b12,bn n2时,Sn(482n1)222n26,n1时也符合,故Sn2n26.14解:(1)证明:n,an,Sn成等差数列,2annSn,又anSnSn1(n2),2(SnSn1)nSn(n2),即Sn2Sn1n(n2),Snn22Sn12n2(n2),Snn22Sn1(n1)2(n2),即2,数列成等比数列(2)由(1)知数列是以S13a134为首项,2为公比的等比数列,Snn242n12n1,又2annSn,2an22n1,an2n1.15证明:(1)ana2an1,an1(an11)2.an0,log2(an11)log2(an1)log2(an1)是以1为首项,为公比的等比数列(2)由(1)可知log2(an1),bnnlog2(an1)n,Sn1,Sn,上面两式相减,得Sn12,Sn44,又bnn0,SnS11,所以1Sn4.