收藏 分享(赏)

《创新设计》2015高考数学(北师大版)一轮训练:选修4-1 第2讲 直线与圆.doc

上传人:高**** 文档编号:111923 上传时间:2024-05-25 格式:DOC 页数:7 大小:352KB
下载 相关 举报
《创新设计》2015高考数学(北师大版)一轮训练:选修4-1 第2讲 直线与圆.doc_第1页
第1页 / 共7页
《创新设计》2015高考数学(北师大版)一轮训练:选修4-1 第2讲 直线与圆.doc_第2页
第2页 / 共7页
《创新设计》2015高考数学(北师大版)一轮训练:选修4-1 第2讲 直线与圆.doc_第3页
第3页 / 共7页
《创新设计》2015高考数学(北师大版)一轮训练:选修4-1 第2讲 直线与圆.doc_第4页
第4页 / 共7页
《创新设计》2015高考数学(北师大版)一轮训练:选修4-1 第2讲 直线与圆.doc_第5页
第5页 / 共7页
《创新设计》2015高考数学(北师大版)一轮训练:选修4-1 第2讲 直线与圆.doc_第6页
第6页 / 共7页
《创新设计》2015高考数学(北师大版)一轮训练:选修4-1 第2讲 直线与圆.doc_第7页
第7页 / 共7页
亲,该文档总共7页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第2讲直线与圆一、填空题1.如图,AB是O的直径,MN与O切于点C,ACBC,则sinMCA_.解析由弦切角定理得,MCAABC,sin ABC.答案2.如图,AB为O的直径,C为O上一点AD和过C点的切线互相垂直,垂足为D,DAB80,则ACO_.解析CD是O的切线,OCCD,又ADCD,OCAD.由此得,ACOCAD,OCOA,CAOACO,CADCAO,故AC平分DAB.CAO40,ACO40.答案403.(2012天津卷)如图,已知AB和AC是圆的两条弦,过点B作圆的切线与AC的延长线相交于点D.过点C作BD的平行线与圆相交于点E,与AB相交于点F,AF3,FB1,EF,则线段CD的长

2、为_解析因为AFBFEFCF,解得CF2,所以,即BD.设CDx,AD4x,所以4x2,所以x.答案4.如图,在ABC中,ABAC,C72,O过A、B两点且与BC相切于点B,与AC交于点D,连接BD,若BC1,则AC_.解析由题易知,CABC72,ADBC36,所以BCDACB,所以BCACCDCB,又易知BDADBC,所以BC2CDAC(ACBC)AC,解得AC2.答案25.(2012陕西卷)如图,在圆O中,直径AB与弦CD垂直,垂足为E,EFDB,垂足为F,若AB6,AE1,则DFDB_.解析由题意知,AB6,AE1,BE5.CEDEDE2AEBE5.在RtDEB中,EFDB,由射影定理得

3、DFDBDE25.答案56. (2012广东卷)如图,直线PB与圆O相切于点B,D是弦AC上的点,PBADBA.若ADm,ACn,则AB_.解析PB切O于点B,PBAACB.又PBADBA,DBAACB,ABDACB.,AB2ADACmn,AB.答案7.如图,O和O相交于A、B两点,过A作两圆的切线分别交两圆于C、D.若BC2,BD4,则AB的长为_解析AC、AD分别是两圆的切线,C2,1D,ACBDAB.,AB2BCBD248.AB2(舍去负值)答案28(2013湖南卷)如图,在半径为的O中,弦AB,CD相交于点P,PAPB2,PD1,则圆心O到弦CD的距离为_解析根据相交弦定理求出PC的长

4、,过O作弦CD的垂线由相交弦定理得PAPBPCPD.又PAPB2,PD1,则PC4,CDPCPD5.过O作CD的垂线OE交CD于E,则E为CD中点,OE.答案9.(2013重庆卷)如图,在ABC中,ACB90,A60,AB20,过C作ABC的外接圆的切线CD,BDCD,BD与外接圆交于点E,则DE的长为_解析在RtACB中,ACB90,A60,ABC30.AB20,AC10,BC10.CD为切线,BCDA60.BDC90,BD15,CD5.由切割线定理得DC2DEDB,即(5)215DE,DE5.答案5二、解答题10.如图,已知AB是O的直径,直线CD与O相切于点C,AC平分DAB,ADCD.

5、(1)求证:OCAD;(2)若AD2,AC,求AB的长(1)证明直线CD与O相切于点C,DCODCAACO90,AOCO,OACACO,AC平分DAB,DACOAC,DACACO,OCAD.(2)解由(1)知OCAD且OCDC,ADDC,即ADC90,连接BC,AB是O的直径,ACB90,ADCACB,又DACBAC,ADCACB,AD2,AC,AB.11.(2013新课标全国卷)如图,直线AB为圆的切线,切点为B,点C在圆上,ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DBDC;(2)设圆的半径为1,BC,延长CE交AB于点F,求BCF外接圆的半径(1)证明如图,连接

6、DE,交BC于点G.由弦切角定理,得ABEBCE,而ABECBE,故CBEBCE,所以BECE.又因为DBBE,所以DE为圆的直径,DCE90.由勾股定理可得DBDC.(2)解由(1)知,CDEBDE,DBDC,故DG是BC边的中垂线,所以BG.设DE的中点为O,连接BO,则BOG60,从而ABEBCECBE30,所以CFBF,故RtBCF外接圆的半径为.12.如图,已知AD是ABC的外角EAC的平分线,交BC的延长线于点D,延长DA交ABC的外接圆于点F,连接FB,FC.(1)求证:FBFC;(2)求证:FB2FAFD;(3)若AB是ABC外接圆的直径,EAC120,BC6 cm,求AD的长(1)证明因为AD平分EAC,所以EADDAC.因为四边形AFBC内接于圆,所以DACFBC.因为EADFABFCB,所以FBCFCB,所以FBFC.(2)证明因为FABFCBFBC,AFBBFD,所以FBAFDB,所以,所以FB2FAFD.(3)解因为AB是圆的直径,所以ACB90,又EAC120,所以ABC30,DACEAC60,因为BC6,所以ACBCtanABC2,所以AD4(cm)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3