1、高中公式1数学必修 1-5 常用公式及结论必修 1:一、集合1、含义与表示:(1)集合中元素的特征:确定性,互异性,无序性(2)集合的分类;有限集,无限集(3)集合的表示法:列举法,描述法,图示法2、集合间的关系:子集:对任意 xA,都有 xB,则称 A 是 B 的子集。记作 AB真子集:若 A 是 B 的子集,且在 B 中至少存在一个元素不属于 A,则 A 是 B 的真子集,记作 A B集合相等:若:,AB BA,则 AB=3.元素与集合的关系:属于不属于:空集:4、集合的运算:并集:由属于集合 A 或属于集合 B 的元素组成的集合叫并集,记为 ABU交集:由集合 A 和集合 B 中的公共元
2、素组成的集合叫交集,记为 ABI 补集:在全集 U 中,由所有不属于集合 A 的元素组成的集合叫补集,记为UC A5集合12,na aaL的子集个数共有2n 个;真子集有2n 1 个;非空子集有2n 1 个;6.常用数集:自然数集:N 正整数集:*N整数集:Z 有理数集:Q 实数集:R 二、函数的奇偶性1、定义:奇函数 f(x)=f(x),偶函数 f(x)=f(x)(注意定义域)2、性质:(1)奇函数的图象关于原点成中心对称图形;(2)偶函数的图象关于 y 轴成轴对称图形;(3)如果一个函数的图象关于原点对称,那么这个函数是奇函数;(4)如果一个函数的图象关于 y 轴对称,那么这个函数是偶函数
3、二、函数的单调性1、定义:对于定义域为 D 的函数 f(x),若任意的 x1,x2D,且 x1 x2 f(x1)f(x 2)f(x1)f(x2)0 f(x)是增函数 f(x1)f(x 2)f(x1)f(x2)0 f(x)是减函数2、复合函数的单调性:同增异减三、二次函数 y=ax2+bx+c(0a)的性质1、顶点坐标公式:abacab44,22,对称轴:abx2=,最大(小)值:abac4422.二次函数的解析式的三种形式(1)一般式2()(0)f xaxbxc a=+;(2)顶点式2()()(0)f xa xhk a=+;(3)两根式12()()()(0)f xa xxxxa=.四、指数与指
4、数函数1、幂的运算法则:(1)a m a n=a m+n,(2)nmnmaaa=,(3)(a m)n =a m n(4)(ab)n=a n b n(5)nnnbaba=(6)a 0=1(a0)(7)nnaa1=(8)mnmnaa=(9)mnmnaa1=2、根式的性质 高中公式2(1)()nn aa=.(2)当 n 为奇数时,nnaa=;当 n 为偶数时,,0|,0nna aaaa a=.4、指数函数 y=a x(a 0 且 a1)的性质:(1)定义域:R;值域:(0,+)(2)图象过定点(0,1)5.指数式与对数式的互化:logba NbaN=(0,1,0)aaN.五、对数与对数函数1 对数的
5、运算法则:(1)a b=N b=log a N(2)log a 1=0(3)log a a=1(4)log a a b=b(5)alog a N=N(6)log a(MN)=log a M+log a N(7)log a(NM)=log a M-log a N(8)log a N b=b log a N(9)换底公式:log a N=aNbbloglog(10)推论 loglogmnaanbbm=(0a,且1a ,0m n,且1m ,1n ,0N).(11)log a N=aNlog1(12)常用对数:lg N=log 10 N(13)自然对数:ln A=log e A(其中 e=2.7182
6、8)2、对数函数 y=log a x(a 0 且 a1)的性质:(1)定义域:(0,+);值域:R(2)图象过定点(1,0)六、幂函数 y=x a 的图象:(1)根据 a 的取值画出函数在第一象限的简图.例如:y=x 221xxy=11=xxyY0X1a 10YX10 a 1X0Y10 a 10 a 1a 0高中公式3七.图象平移:若将函数)(xfy=的图象右移 a、上移b 个单位,得到函数baxfy+=)(的图象;规律:左加右减,上加下减八.平均增长率的问题如果原来产值的基础数为 N,平均增长率为 p,则对于时间 x 的总产值 y,有(1)xyNp=+.九、函数的零点:1.定义:对于()yf
7、 x=,把使()0f x=的 X 叫()yf x=的零点。即()yf x=的图象与 X 轴相交时交点的横坐标。2.函数零点存在性定理:如果函数()yf x=在区间,a b 上的图象是连续不断的一条曲线,并有()()0f af b,那么()yf x=在区间(),a b 内有零点,即存在(),ca b,使得()0f c=,这个 C 就是零点。3.二分法求函数零点的步骤:(给定精确度)(1)确定区间,a b,验证()()0f af b;(2)求(),a b 的中点12abx+=(3)计算1()f x 若1()0f x=,则1x 就是零点;若1()()0f af x,则零点()01,xa x若1()(
8、)0f xf b,则零点()01,xx b;(4)判断是否达到精确度,若 ab,则零点为 a 或b 或(),a b 内任一值。否则重复(2)到(4)必修 2:一、直线与圆1、斜率的计算公式:k=tan=1212xxyy(90,x 1x 2)2、直线的方程(1)斜截式 y=k x+b,k 存在;(2)点斜式 y y 0=k(x x 0),k 存在;(3)两点式121121xxxxyyyy=(1212,xxyy);4)截距式1=+byax(0,0ab)(5)一般式0(,0AxBycA B+=不同时为)3、两条直线的位置关系:l1:y=k1 x+b1l2:y=k 2 x+b2l1:A1 x+B1 y
9、+C1=0l2:A2 x+B2 y+C2=0重合k1=k 2 且 b1=b2212121CCBBAA=平行k1=k 2 且 b1 b2212121CCBBAA=垂直k1 k 2=1A1 A2+B1 B2=04、两点间距离公式:设 P1(x 1,y 1)、P 2(x 2,y 2),则|P1 P2|=()()221221yyxx+5、点 P(x 0,y 0)到直线 l:A x+B y+C=0 的距离:2200BACByAxd+=7、圆的方程圆的方程圆心半径标准方程x 2+y 2=r 2(0,0)r(x a)2+(y b)2=r 2(a,b)r高中公式4一般方程x 2+y 2+D x+E y+F=0
10、22E,DFED42122+8.点与圆的位置关系点00(,)P xy与圆222)()(rbyax=+的位置关系有三种若2200()()daxby=+,则 dr 点 P在圆外;dr=点 P 在圆上;dr 点 P 在圆内.9.直线与圆的位置关系(圆心到直线的距离为 d)直线0=+CByAx与圆222)()(rbyax=+的位置关系有三种:0相离rd;0=相切rd;0相交rd.10.两圆位置关系的判定方法设两圆圆心分别为 O1,O2,半径分别为 r1,r2,dOO=21条公切线外离421+rrd;条公切线外切321+=rrd;条公切线相交22121+rrdrr;条公切线内切121=rrd;无公切线内
11、含 210rrd.11.圆的切线方程(1)已知圆220 xyDxEyF+=若已知切点00(,)xy在圆上,则切线只有一条,其方程是 0000()()022D xxE yyx xy yF+=.当00(,)xy圆外时,0000()()022D xxE yyx xy yF+=表示过两个切点的切点弦方程 过圆外一点的切线方程可设为00()yyk xx=,再利用相切条件求 k,这时必有两条切线,注意不要漏掉平行于 y 轴的切线 斜率为 k 的切线方程可设为 ykxb=+,再利用相切条件求 b,必有两条切线(2)已知圆222xyr+=过圆上的000(,)P xy点的切线方程为200 x xy yr+=;斜
12、率为 k 的圆的切线方程为21ykxrk=+二、立体几何(一)、线线平行判定定理:1、平行于同一条直线的两条直线互相平行。2、垂直于同一平面的两直线平行。3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。4、如果两个平行平面同时与第三个平面相交,那么它们的交线平行。(二)、线面平行判定定理1、若平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。2、若两个平面平行,则其中一个平面内的任何一条直线都与另一个平面平行。(三)、面面平行判定定理:如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面平行。(四)、线线垂直判定定理:若一直线
13、垂直于一平面,则这条直线垂直于这个平面内的所有直线。(五)、线面垂直判定定理1、如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。高中公式52、如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。(六)、面面垂直判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。(七)证明直线与直线的平行的思考途径(1)转化为判定共面二直线无交点;(2)转化为二直线同与第三条直线平行;(3)转化为线面平行;(4)转化为线面垂直;(5)转化为面面平行.(八)证明直线与平面的平行的思考途径(1)转化为直线与平面无公共点;(2)转化为线线平行;(3)
14、转化为面面平行.(九)证明平面与平面平行的思考途径(1)转化为判定二平面无公共点;(2)转化为线面平行;(3)转化为线面垂直.(十)证明直线与直线的垂直的思考途径(1)转化为相交垂直;(2)转化为线面垂直;(3)利用三垂线定理或逆定理;(十一)证明直线与平面垂直的思考途径(1)转化为该直线与面内任一直线垂直;(2)转化为该直线与平面内相交二直线垂直;(3)转化为该直线与平面的一条垂线平行;(4)转化为该直线垂直于另一个平行平面;(十二)证明平面与平面的垂直的思考途径(1)转化为判断二面角是直二面角;(2)转化为线面垂直.三、空间几何体(一)、正三棱锥的性质1、底面是正三角形,若设底面正三角形的
15、边长为 a,则有图形外接圆半径内切圆半径面积正三角形aOA33=aOD63=243 aS=2、正三棱锥的辅助线作法一般是:作 PO底面 ABC 于 O,则 O 为ABC 的中心,PO 为棱锥的高,取 AB 的中点 D,连结 PD、CD,则 PD 为三棱锥的斜高,CD 为ABC 的 AB 边上的高,且点 O 在 CD 上。POD 和POC 都是直角三角形,且POD=POC=90(二)、正四棱锥的性质1、底面是正方形,若设底面正方形的边长为 a,则有图形外接圆半径内切圆半径面积正方形OB=a22OA=2aS=a 22、正四棱锥的辅助线作法一般是:作 PO底面 ABCD 于 O,则 O 为正方形 A
16、BCD 的中心,PO 为棱锥的高,取 AB 的中点 E,连结 PE、OE、OA,则 PE 为四棱锥的斜高,点 O 在 AC 上。POE 和POA 都是直角三角形,且POE=OABPDACBOEDOBACBAPDO高中公式6POA=90(三)、长方体长方体的一条对角线长的平方等于这个长方体的长、宽、高的平方和。特殊地,若正方体的棱长为 a,则这个正方体的一条对角线长为 3 a。(四)、正方体与球1、设正方体的棱长为 a,它的外接球半径为 R1,它的内切球半径为 R2,则,231Ra=22Ra=(五)几何体的表面积体积计算公式1、圆柱:表面积:22R+2Rh 体积:Rh2、圆锥:表面积:R+RL
17、体积:Rh/3(L 为母线长)3、圆台:表面积:22()rRrR l+体积:Vh(RRrr)/34、球:S 球面=4R2 V 球=34 R3(其中 R 为球的半径)5、正方体:a边长,S6a,Va6、长方体a长,b宽,c高 S2(ab+ac+bc)Vabc 7、棱柱:全面积=侧面积+2X 底面积VSh 8、棱锥:全面积=侧面积+底面积VSh/3 9、棱台:全面积=侧面积+上底面积+下底面积11221()3Vss ss h=+四、三视图1.投影:把光由一点向外散射形成的投影称为中心投影。把在一束平行光线照射下形成的投影,称为平行投影。平行投影按照投射方向是否正对着投影面,可以分为斜投影和正投影两
18、种。2、光线从几何体的前面向后面正投影,得到投影图,这种投影图叫做几何体的正视图(也叫主视图);光线从几何体的上面向下面正投影,得到投影图,这种投影图叫做几何体的俯视图;光线从几何体的左面向右面正投影,得到投影图,这种投影图叫做几何体的侧视图(或左视图)3、“长对正,高平齐,宽相等”是三视图之间的投影规律,是画图和读图的重要依据.画几何体的三视图时,能看见的轮廓线和棱用实线表示,不能看见的轮廓线和棱用虚线表示。必修 3:第一章算法初步1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2、构
19、成程序框的图形符号及其作用OA1 B1 C1 D1 A B C D高中公式7程序框名称功能起止框表示一个算法的起始和结束,是任何流程图不可少的。输入、输出框表示一个算法输入和输出的信息,可用在算法中任何需要输入、输出的位置。处理框赋值、计算,算法中处理数据需要的算式、公式等分别写在不同的用以处理数据的处理框内。判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”。3、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。(结构图请看教材)4、(1)、辗转相除法:用较大的数除以较小的数所得的余数和较小的数构成新的一对数,继续做上面的除法,直到大数被小数除尽,这
20、个较小的数就是最大公约数。(2)、更相减损术。以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。(3)进位制以 k 为基数的 k 进制换算为十进制:110110()110.nnnnknna aa aa kaka ka k=+ggLgg十进制换算为 k 进制:除以 k 取余,倒序排列第二章统计1总体和样本:在统计学中,把研究对象的全体叫做总体把每个研究对象叫做个体把总体中个体的总数叫做总体容量为了研究总体的有关性质,一般从总体中随机抽取一部分:,研究,我们称它为样本其中个体的个数称为样本容量 2、简单随
21、机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同。(总体个数较少)3、简单随机抽样常用的方法:(1)抽签法;随机数表法;计算机模拟法;4、系统抽样(等距抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。第一个样本采用简单随机抽样的办法抽取。(总体个数较多)K(抽样距离)=N(总体规模)/n(样本规模)5、分层抽样:先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系统抽样的办法抽取一个子样本,最后,将这些子样本合起来
22、构成总体的样本。先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中高中公式8抽取。(总体中差异明显)6、总体分布的估计:一表二图:频率分布表数据详实频率分布直方图分布直观频率分布折线图便于观察总体分布趋势注:总体分布的密度曲线与横轴围成的面积为 1。茎叶图:茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数、众位数等。个位数为叶,十位数为茎,右侧数据按照从小到大书写,相同的数重复写。7、用样本的数字特征估计总体的数字特征(s 为标准差)(1)、平均值:nxxxxn+=21(2)、22212()()()nxxxxxxsn+=L8、两个变量的线性相关(1)、概念:(1)回
23、归直线方程:ya b x=+(2)回归系数:1221niiiniix ynxybxnx=,ayb x=(3)应用直线回归时注意:回归分析前,最好先作出散点图;第三章概率一、概念 1、事件:试验的每一种可能的结果,用大写英文字母表示;(1)必然事件:在条件 S 下,一定会发生的事件,叫相对于条件 S 的必然事件;(2)不可能事件:在条件 S 下,一定不会发生的事件,叫相对于条件 S 的不可能事件;(3)随机事件:在条件 S 下可能发生也可能不发生的事件,叫相对于条件 S 的随机事件;2、古典概型:基本事件:一次试验中可能出现的每一个基本结果;古典概型的特点:基本事件可列举;每个基本事件都是等可能
24、发生概率计算公式:一次试验的等可能基本事件共有 n 个,事件 A 包含了其中的 m 个基本事件,则事件 A 发生的概率()mp An=3、几何概型:特点:所有的基本事件是无限个;每个基本事件都是等可能发生。几何概型概率计算公式:积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A。4、若 AB=,即不可能同时发生的两个事件,那么称事件 A 与事件 B 互斥;5、若 AB 为不可能事件,AB 为必然事件,即不能同时发生且必有一个发生的两个事件,那么称事件 A 与事件 B 互为对立事件;二、概率的基本性质:1)必然事件概率为 1,不可能事件概率为 0,因此 0P(A)1;
25、2)当事件 A 与 B 互斥时,满足加法公式:P(AB)=P(A)+P(B);3)若事件 A 与 B 为对立事件,则 AB 为必然事件,所以 P(AB)=P(A)+P(B)=1,于是有 P(A)=1P(B);4)互斥事件与对立事件的区别与联系,互斥事件是指事件 A 与事件 B 在一次试验中不会同时发高中公式9生,具体包括三种不同的情形:(1)事件 A 发生且事件 B 不发生;(2)事件 A 不发生且事件 B 发生;(3)事件 A 与事件 B 同时不发生,而对立事件是指事件 A 与事件 B 有且仅有一个发生,其包括两种情形;(1)事件 A 发生 B 不发生;(2)事件 B 发生事件 A 不发生,
26、对立事件是互斥事件的特殊情形。必修 4 一、三角函数与三角恒等变换1、三角函数的图象与性质函数正弦函数余弦函数正切函数图象定义域RRx|x 2+k,kZ值域-1,1-1,1R周期性22奇偶性奇函数偶函数奇函数单调性增 区 间-2+2k ,2+2k减区间 2+2k,23+2k增区间-+2k,2k减区间2k,+2k(kZ)增区间(-2+k,2+k)(kZ)对称轴x=2+k(kZ)x=k(kZ)无对称中心(k,0)(kZ)(2+k,0)(kZ)(k 2,0)(kZ)2、同角三角函数公式sin 2+cos 2=1 cossintan=tancot=13、二倍角的三角函数公式sin2=2sincosco
27、s2=2cos2-1=1-2 sin2=cos2-sin22tan1tan22tan=4、降幂公式22cos1cos2+=22cos1sin 2=5、升幂公式 1sin2=(sincos)21+cos2=2 cos21-cos2=2 sin26、两角和差的三角函数公式sin()=sincos土 cossincos()=coscos干 sinsin ()tantan1tantantan=7、两角和差正切公式的变形:高中公式10tantan=tan()(1 干 tantan)tan1tan1+=tan45tan1tan45tan+=tan(4+)tan1tan1+=tan45tan1tan45ta
28、n+=tan(4-)8、两角和差正弦公式的变形(合一变形)()+=+sincossin22baba (其中ab=tan)9、半角公式:212cossin=212coscos+=sincoscossincoscostan=+=+=1111210、三角函数的诱导公式“奇变偶不变,符号看象限。”sin()=sin,cos()=cos,tan()=tan;sin(+)=sincos(+)=costan(+)=tansin(2)=sincos(2)=costan(2)=tansin()=sincos()=costan()=tansin(2)=coscos(2)=sintan(2)=cotsin(2+)=
29、coscos(2+)=sintan(2+)=cot11.三角函数的周期公式函数sin()yx=+,xR 及函数cos()yx=+,xR(A,为常数,且 A0,0)的周期2T=;函数tan()yx=+,,2xkkZ+(A,为常数,且 A0,0)的周期T=.二、平面向量(一)、向量的有关概念1、向量的模计算公式:(1)向量法:|a|=2aaa=;(2)坐标法:设 a=(x,y),则|a|=22yx+2、单位向量的计算公式:(1)与向量 a=(x,y)同向的单位向量是+2222yxy,yxx;(2)与向量 a=(x,y)反向的单位向量是+2222yxy,yxx;3、平行向量规定:零向量与任一向量平行
30、。设 a=(x1,y1),b=(x2,y2),为实数向量法:a b(b 0)a=b高中公式11坐标法:a b(b 0)x1 y2 x2 y1=0 2211yxyx=(y1 0,y 2 0)4、垂直向量规定:零向量与任一向量垂直。设 a=(x1,y1),b=(x2,y2)向量法:a b a b=0 坐标法:a b x1 x 2+y1 y 2=05.平面两点间的距离公式,A Bd=|ABAB AB=uuuruuur uuur222121()()xxyy=+(A11(,)x y,B22(,)xy).(二)、向量的加法(1)向量法:三角形法则(首尾相接首尾连),平行四边形法则(起点相同连对角)(2)坐
31、标法:设 a=(x1,y1),b=(x2,y2),则a+b=(x1+x2,y1+y2)(三)、向量的减法(1)向量法:三角形法则(首首相接尾尾连,差向量的方向指向被减向量)(2)坐标法:设 a=(x1,y1),b=(x2,y2),则a-b=(x1-x2,y1-y2)(3)、重要结论:|a|-|b|a b|a|+|b|(四)、两个向量的夹角计算公式:(1)向量法:cos=|baba(2)坐标法:设 a=(x1,y1),b=(x2,y2),则 cos=222221212121yxyxyyxx+(五)、平面向量的数量积计算公式:(1)向量法:a b=|a|b|cos(2)坐标法:设 a=(x1,y1
32、),b=(x2,y2),则a b=x1 x2+y1 y2(3)ab 的几何意义:数量积 ab 等于 a 的长度|a|与 b 在 a 的方向上的投影|b|cos的乘积(六).1、实数与向量的积的运算律:设、为实数,那么(1)结合律:(a)=()a;(2)第一分配律:(+)a=a+a;(3)第二分配律:(a+b)=a+b.2.向量的数量积的运算律:(1)ab=ba(交换律);(2)(a)b=(ab)=ab=a(b);(3)(a+b)c=a c+bc.3.平面向量基本定理:如果 e1、e 2 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数1、2,使得 a=1e1+2e2
33、不共线的向量 e1、e2 叫做表示这一平面内所有向量的一组基底(七).三角形的重心坐标公式ABC 三个顶点的坐标分别为11A(x,y)、22B(x,y)、33C(x,y),则ABC 的重心的坐 标是123123(,)33xxxyyyG+必修 5 一、解三角形:ABC 的六个元素 A,B,C,a,b,c 满足下列关系:高中公式121、角的关系:A+B+C=,特殊地,若ABC 的三内角 A,B,C 成等差数列,则B=60,A+C=1202、诱导公式的应用:sin(A+B)=sinC,cos(A+B)=-cosC,sin(22BA+)=cos 2C,cos(22BA+)=sin 2C3、边的关系:a+b c,a b 0 时,有22xaxaaxa .22xaxaxa或 xa.(四).指数不等式与对数不等式(1)当1a 时,()()()()f xg xaaf xg x;()0log()log()()0()()aaf xf xg xg xf xg x.(2)当01a 时,()()()()f xg xaaf xg x;()0log()log()()0()()aaf xf xg xg xf xg x(五).0AxByC+或0所表示的平面区域:直线定界,特殊点定域。