1、课时分层训练(六十八)参数方程1在平面直角坐标系xOy中,圆C的参数方程为(t为参数)在极坐标系(与平面直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,直线l的方程为sinm(mR)(1)求圆C的普通方程及直线l的直角坐标方程;(2)设圆心C到直线l的距离等于2,求m的值解(1)消去参数t,得到圆C的普通方程为(x1)2(y2)29.2分由sinm,得sin cos m0,所以直线l的直角坐标方程为xym0.4分(2)依题意,圆心C到直线l的距离等于2,8分即2,解得m32.10分2极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴已知
2、直线l的参数方程为(t为参数),曲线C的极坐标方程为sin28cos .(1)求曲线C的直角坐标方程;(2)设直线l与曲线C交于A,B两点,求弦长|AB|.解(1)由sin28cos ,得2sin28cos ,故曲线C的直角坐标方程为y28x.4分(2)将直线l的方程化为标准形式6分代入y28x,并整理得3t216t640,t1t2,t1t2.8分所以|AB|t1t2|.10分3(2016全国卷)在直角坐标系xOy中,圆C的方程为(x6)2y225.(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(2)直线l的参数方程是(t为参数),l与C交于A,B两点,|AB|,求l
3、的斜率解(1)由xcos ,ysin 可得圆C的极坐标方程为212cos 110.4分(2)在(1)中建立的极坐标系中,直线l的极坐标方程为(R)设A,B所对应的极径分别为1,2,将l的极坐标方程代入C的极坐标方程得212cos 110,于是1212cos ,1211.8分|AB|12|.由|AB|得cos2,tan .所以l的斜率为或.10分4(2014全国卷)在直角坐标系xOy中,以坐标原点为极点,x轴非负半轴为极轴建立极坐标系,半圆C的极坐标方程为2cos ,.(1)求C的参数方程;(2)设点D在C上,C在D处的切线与直线l:yx2垂直,根据(1)中你得到的参数方程,确定D的坐标解(1)
4、C的普通方程为(x1)2y21(0y1)可得C的参数方程为(t为参数,0t).4分(2)设D(1cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆因为C在点D处的切线与l垂直,所以直线CD与l的斜率相同,tan t,t.8分故D的直角坐标为,即.10分5(2017湖北七市三联)在平面直角坐标系xOy中,曲线C1的参数方程为(为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为sin,曲线C2的极坐标方程为2acos(a0)(1)求直线l与曲线C1的交点的极坐标(,)(0,02);(2)若直线l与C2相切,求a的值.【导学号:5796248
5、7】解(1)曲线C1的普通方程为yx2,x,直线l的直角坐标方程为xy2,联立解得或(舍去)故直线l与曲线C1的交点的直角坐标为(1,1),其极坐标为.4分(2)曲线C2的直角坐标方程为x2y22ax2ay0,即(xa)2(ya)22a2(a0).8分由直线l与C2相切,得a,故a1.10分6(2017福州质检)在平面直角坐标系xOy中,曲线C的参数方程为(为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为sin.(1)求C的普通方程和l的倾斜角;(2)设点P(0,2),l和C交于A,B两点,求|PA|PB|.解(1)由消去参数,得y21,即C的普通方程为y21.2分由sin,得sin cos 2,(*)将代入(*),化简得yx2,所以直线l的倾斜角为.4分(2)由(1)知,点P(0,2)在直线l上,可设直线l的参数方程为(t为参数),即(t为参数),代入y21并化简,得5t218t270,(18)245271080,8分设A,B两点对应的参数分别为t1,t2,则t1t20,t1t20,所以t10,t20,所以|PA|PB|t1|t2|(t1t2).10分