1、课时作业(二十)1数列,的前n项和为()A.B.C. D.答案B2数列1,2,3,4,的前n项和为()A.(n2n2) B.n(n1)1C.(n2n2) D.n(n1)2(1)答案A3若一个数列an满足anan1H(H为常数,nN*),则称数列an为等和数列,H为公和,Sn是其前n项的和,已知等和数列an中,a11,H3,则S2 011等于()A3 016 B3 015C3 014 D3 013答案C4数列1,(12),(1222),(12222n1),的前n项之和为()A2n1 Bn2nnC2n1n D2n1n2答案D解析记an12222n12n1,Snn2n12n.5数列an、bn满足an
2、bn1,ann23n2,则bn的前10项之和为()A. B.C. D.答案B解析bn,S10b1b2b3b10.6(1002992)(982972)(2212)_.答案5 050解析原式100999897215 050.7Sn_.答案解析an(),Sn(1)(1).8求和:Sn(x)2(x2)2(xn)2.解析当x1时,Sn(x)2(x2)2(xn)2(x22)(x42)(x2n2)(x2x4x2n)2n()2n2n;当x1时,Sn4n.综上知,Sn9求和1,1a,1aa2,1aa2an1,的前n项和Sn(其中a0)解析当a1时,则ann,于是Sn123n.当a1时,an(1an)Snn(aa
3、2an)n.Sn10求和:1.解析an2(),Sn2(1).11数列an的前n项和为Sn10nn2,求数列|an|的前n项和解析易求得an2n11(nN*)令an0,得n5;令an0,得n6. 记Tn|a1|a2|an|,则(1)当n5时,Tn|a1|a2|an|a1a2anSn10nn2.(2)当n6时,Tn|a1|a2|an|a1a2a3a4a5a6a7an2(a1a2a3a4a5)(a1a2a3a4a5a6an)2S5Snn210n50.综上,得Tn12已知等差数列an满足a20,a6a810.(1)求数列an的通项公式;(2)求数列的前n项和解析(1)设等差数列an的公差为d.由已知条
4、件可得解得故数列an的通项公式为an2n.(2)设数列的前n项和为Sn,即Sna1,故S11,.所以,当n1时,a11()1(1).所以Sn.综上,数列的前n项和Sn.重点班选作题13设数列an满足a12,an1an322n1.(1)求数列an的通项公式;(2)令bnnan,求数列bn的前n项和Sn.解析(1)由已知,当n1时,an1(an1an)(anan1)(a2a1)a13(22n122n32)222(n1)1.而a12,所以数列an的通项公式为an22n1.(2)由bnnann22n1,知Sn12223325n22n1.从而22Sn123225327n22n1.,得(122)Sn2232522n1n22n1,即Sn(3n1)22n1214已知等差数列an满足:a37,a5a726.an的前n项和为Sn.(1)求an及Sn;(2)令bn(nN*),求数列bn的前n项和Tn.解析(1)设等差数列an的首项为a1,公差为d,由于a37,a5a726,所以a12d7,2a110d26,解得a13,d2.由于ana1(n1)d,Sn,所以an2n1,Snn(n2)(2)因为an2n1,所以a14n(n1)因此bn()故Tnb1b2bn(1)(1).所以数列bn的前n项和Tn.