教材习题点拨习题3.31证明:不妨设a1a2an,由乱序和顺序和,可得a1c1a2c2ancna1a1a2a2ananaaa.2证明:不妨设abc0,于是a2b2c2.由排序不等式,可得a3b3c3a2bb2cc2a,a3b3c3a2cb2ac2b,2(a3b3c3)a2(bc)b2(ac)c2(ab)3证明:不妨设a1a2a30,a2a3a3a1a1a2.由排序不等式知,乱序和顺序和,可得a1a2a2a3a3a1a1a2a3,即a1a2a3.4证明:由于所证明的不等式有对称性,所以不妨设0a1a2an.证法一:由柯西不等式,有(a2a3ana1)2,(a1a2a3an)(a1a2an)2.(*)又a1,a2,an为正数,a1a2an为正数(*)式两边同除以a1a2an,即可得要证的不等式证法二:由题设,可知aaa,.,为,的一个排列,于是由排序不等式,可得aaaaaaaa1a2an,即aaaaa1a2an.