ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:255.50KB ,
资源ID:109587      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-109587-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《创新设计》2015高考数学(人教通用文科)二轮专题训练·对接高考练习:专题4第1讲 立体几何的基本问题(计算与位置关系).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《创新设计》2015高考数学(人教通用文科)二轮专题训练·对接高考练习:专题4第1讲 立体几何的基本问题(计算与位置关系).doc

1、一、选择题1(2014广东卷)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1l2,l2l3,l3l4,则下列结论一定正确的是()Al1l4Bl1l4Cl1与l4既不垂直也不平行Dl1与l4的位置关系不确定解析构造如图所示的正方体ABCDA1B1C1D1,取l1为AD,l2为AA1,l3为A1B1,当取l4为B1C1时,l1l4,当取l4为BB1时,l1l4,故排除A、B、C,选D.答案D2(2014重庆卷)某几何体的三视图如图所示,则该几何体的表面积为()A54 B60 C66D72解析还原为如图所示的直观图,S表SABCSDEFS矩形ACFDS梯形ABEDS梯形CBEF34355

2、3(25)4(25)560.答案B3(2014安徽卷)一个多面体的三视图如图所示,则该多面体的体积为()A.B C6D7解析如图,由三视图可知,该几何体是由棱长为2的正方体右后和左下分别截去一个小三棱锥得到的,其体积为V2222111.答案A4(2014潍坊一模)三棱锥SABC的所有顶点都在球O的表面上,SA平面ABC,ABBC,又SAABBC1,则球O的表面积为()A.B C3D12解析如图,因为ABBC,所以AC是ABC所在截面圆的直径,又因为SA平面ABC,所以SAC所在的截面圆是球的大圆,所以SC是球的一条直径由题设SAABBC1,由勾股定理可求得:AC,SC,所以球的半径R,所以球的

3、表面积为423.答案C二、填空题5. (2014金丽衢十二校联考)一个几何体的三视图如图所示,则该几何体的体积为_解析由题意可得,几何体相当于一个棱长为2的正方体切去一个角,角的相邻三条棱长分别是1,2,2,所以几何体的体积为8.答案6(2014山东卷)一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为_解析设棱锥的高为h,则VS底h622h2,h1,由勾股定理知,侧棱长为,六棱锥六个侧面全等,且侧面三角形的高为2,S侧22612.答案127(2014武汉调研测试)已知某几何体的三视图如图所示,则该几何体的表面积为_解析由三视图可知,该几何体是底面半径为1,高

4、为,母线长为2的圆锥的一半,其表面积是整个圆锥表面积的一半与轴截面的面积之和所以,S212122.答案8正方体ABCDA1B1C1D1中,E为线段B1D1上的一个动点,则下列结论中正确的是_(填序号)ACBE;B1E平面ABCD;三棱锥EABC的体积为定值;直线B1E直线BC1.解析因AC平面BDD1B1,故正确;易得正确;记正方体的体积为V,则VEABCV为定值,故正确;B1E与BC1不垂直,故错误答案三、解答题9(2014山东卷)如图,四棱锥PABCD中,AP平面PCD,ADBC,ABBCAD,E,F分别为线段AD,PC的中点(1)求证:AP平面BEF;(2)求证:BE平面PAC.证明(1

5、)设ACBEO,连接OF,EC.由于E为AD的中点,ABBCAD,ADBC,所以AEBC,AEABBC,因此四边形ABCE为菱形,所以O为AC的中点又F为PC的中点,因此在PAC中,可得APOF.又OF平面BEF,AP平面BEF.所以AP平面BEF.(2)由题意知EDBC,EDBC.所以四边形BCDE为平行四边形,因此BECD.又AP平面PCD,所以APCD,因此APBE.因为四边形ABCE为菱形,所以BEAC.又APACA,AP,AC平面PAC,所以BE平面PAC.10. (2014威海一模)如图,矩形ABCD所在的平面和平面ABEF互相垂直,等腰梯形ABEF中,ABEF,AB2,ADAF1

6、,BAF60,O,P分别为AB,CB的中点,M为底面OBF的重心 (1)求证:平面ADF平面CBF;(2)求证:PM平面AFC;(3)求多面体CDAFEB的体积V.(1)证明矩形ABCD所在的平面和平面ABEF互相垂直,且CBAB,CB平面ABEF,又AF平面ABEF,所以CBAF,又AB2,AF1,BAF60,由余弦定理知BF,AF2BF2AB2,得AFBF,BFCBB,AF平面CFB,又AF平面ADF;平面ADF平面CBF.(2)证明连接OM延长交BF于H,则H为BF的中点,又P为CB的中点,PHCF,又CF平面AFC,PH平面AFC,PH平面AFC,连接PO,则POAC,又AC平面AFC

7、,PO平面AFC,PO平面AFC,POPHP,平面POH平面AFC,又PM平面POH,PM平面AFC.(3)解多面体CDAFEB的体积可分成三棱锥CBEF与四棱锥FABCD的体积之和在等腰梯形ABEF中,计算得EF1,两底间的距离EE1.所以VCBEFSBEFCB11,VFABCDS矩形ABCDEE121,所以VVCBEFVFABCD.11(2014江西卷)如图,三棱柱ABCA1B1C1中,AA1BC,A1BBB1.(1)求证:A1CCC1;(2)若AB2,AC,BC,问AA1为何值时,三棱柱ABCA1B1C1体积最大,并求此最大值 (1)证明由AA1BC知BB1BC,又BB1A1B,故BB1

8、平面BCA1,即BB1A1C,又BB1CC1,所以A1CCC1.(2)解法一设AA1x,在RtA1BB1中,A1B.同理,A1C.在A1BC中,cos BA1C,sin BA1C,所以SA1BCA1BA1Csin BA1C.从而三棱柱ABCA1B1C1的体积VS直lSA1BCAA1,因x,故当x,即AA1时,体积V取到最大值.法二如图,过A1作BC的垂线,垂足为D,连接AD.由AA1BC,A1DBC,故BC平面AA1D,BCAD,又BAC90,所以SABCADBCABAC,所以AD.设AA1x,在RtAA1D中,A1D,SA1BCA1DBC.从而三棱柱ABCA1B1C1的体积VS直lSA1BCAA1.因x,故当x,即AA1时,体积V取到最大值.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3