ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:115.50KB ,
资源ID:1091625      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1091625-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(湖南省新田一中高二数学文理科集体备课论课说课稿素材:第九周.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

湖南省新田一中高二数学文理科集体备课论课说课稿素材:第九周.doc

1、课题:等比数列1.教学任务分析1.1 学情分析 本节课的授课对象是c班学生,数学水平参差不齐,依赖性强,接受能力一般,灵活性不够。因此本节课采用低起点,由浅到深,由易到难逐步推进,热情地启发学生的思维,让学生在欢愉的气氛中获取知识和运用知识的能力。1.2 教材分析1.2.1 教材地位和作用本节课是人教版必修5第二章第二节第一课时的内容,是在学生已经系统地学习了一种常用数列,即等差数列的概念、通项公式和前n项和公式的基础上,开始学习另一种常用数列。教材通过日常生活中的实例,讲解等比数列的概念,通过列表,图像,通项公式来表达等比数列,把数列融于函数之中,体现了数列的本质和内涵。等比数列的定义与通项

2、不仅是本章的重点和难点,也是高中阶段培养学生逻辑推理的重要载体之一。1.2.3教学重点和难点教学重点:等比数列、等比中项的概念的形成与深化;等比数列通项公式的推导及应用。教学难点是:等比数列概念深化:体现它是一种特殊函数,等比数列的判定、证明及初步应用。2.教材教法和学法分析 2.1教材的处理考虑到学生的基础较差,故应稀释、放大、拉长等比数列概念的形成,展示深化过程和通项公式的推导过程,体现过程教学法。本节着重体现等比数列概念形成的过程及通项公式的推导与运用,因此把等比中项的概念安排到第二课时教学。2.2教材的教法遵循“教为主导,学为主体,练为主线”的教育思想,我所采用的教学方法主要是启发引导

3、探究法,并以讨论法,讲授法相佐。2.3教材的学法自学类比归纳练习3.教学过程 具体教学过程分为复习引新、新课教学、练习反馈、总结提高、归纳小结与布置作业六个阶段。3.1、复习引新 等差数列的定义: 等差数列的通项公式;3.2新课教学3.2.1等比数列概念的教学具体分为四个环节创设情境,引入概念引例1:细胞分裂问题假设每经过一个单位时间每个细胞都分裂为两个细胞,再假设开始有一个细胞,经过一个单位时间它分裂为两个细胞,经过两个单位时间就有了四个细胞,一直进行下去,记录下每个单位时间的细胞个数,依次得到了一列数,求这些数所构成的数列。引例2:某轿车的售价约万元,年折旧率约为10(就是说这辆车每年减少

4、它的价值的10),那么该车从购买当年算起,逐年的价值依次为: 引例3:庄子天下篇曰:“一尺之棰,日取其半,万世不竭.”如果把“一尺之棰”看成单位”1”,你能用一个数列来表达这句话的含义吗?意图:由生活中的实例,激发学生学习兴趣,通过类比等差数列的定义,让学生自行给出等比数列的定义,它与等差数列定义仅一个关键字之差。等比数列:一般的,如果一个数列从第2项起,每一项与它前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。(q0且an 0 )抓本质,理解概念试判断下列数列是不是等比数列,如果是求出公比 (1) 1,3,9,27,81,243,(公比为3

5、)(2) (公比为1)(3) 2, 4, 8, 16, 32, 47,(不是)(4) a, a, a, a,(不一定)(5) 1, 6, 36, 0,(不是)破难点 强化概念举例:数列, ,3,6,12 是否为等比数列,如是,其公比是多少?并给出证明。意图:等比数列的判定和证明是一个难点,因此,通过问题的训练和辨析可以突破难点。强训练,巩固概念思考:判断下列哪些说法是正确的:(1)如果个公比为q等比数列的各项均改为它本身的相反数,所得到的数列是否成等比数列?(2)如果个等比数列的各项均改为它本身的倒数,所得到的数列是否成等比数列? (3)如果一个等比列的各项均改为它本身的平方,所得到的数列是否

6、成等比数列? (4)如果把二个项数相同的公比不同分别为等比数列的对应项相乘,所得到的数列是否成等比数列?意图:数学概念只有经过学生的一定练习,不断辨析,反复纠错,才能真正理解,领会、掌握和巩固。 意图:等差列、等比数列,是二个既有区别又有联系的数学概念。通过问题的训练和辩析,可以达到等比数列等概念的进一步强化、深化、活化。3.2.2演绎推理论证(累积法)意图:这时教师要鼓励学生根据问题的起因和内部联系的条件,自由思考,大胆设想别的推导方法,例如,可引导学生围绕等比数列的基本概念,从等比数列的定义出发,运用各式相乘,来导出公式(演绎法),有时学生难以想到的路,教师可以为学生架座桥,当然也可以直接

7、让学生完成。教师:设a1,a2,a3是公比为q的等比数列,则由定义得:(1)(2)(n-1)问:结合求等差数列的通项公式的方法,如何求得等比数列的通项公式? 由定义式得:(n1)个等式 若将上述n1个等式相乘,便可得:qn1即:ana1qn1(n2)当n1时,左a1,右a1,所以等式成立,等比数列通项公式为:ana1qn1(a1,q0)问题拓展:(1)问等比数列中任意两项之间的关系式是什么?能否得到更一般的通项公式?结论:,所以更一般的通项公式为,效果:这个过程中教师要放慢教学节奏,不要急于下结论,而让学生充分思考讨论,这样有利于启发学生发散性思维,使学生的思维处于活跃状态,探究;由一个等比数

8、列中的任意两项和是否可以确定这个等比数列的通项公式?为什么?意图:这个过程教师不要急于下结论,适时点拔,要让学生有充分的展示机会,这样培养学生的独立解决问题的能力大有好处的。因为,当为奇数时,q唯一解,所以可以确定这个等比数列;当为偶数时,q有两个不同互为相反数的解,所以不可以确定这个等比数列。即只有当已知两项的项数奇偶性不同时,才可以确定这个数列,否则有两个数列满足题意。等比数列的通项公式:1、,其中首项,为公比2、,3.3例题讲解3.3.1精讲例题(略)3.3.2学生板演习题2.4,A组题第1题共4个小题请四位同学板演,其余学生自做,教师通过课堂巡视了解学生做的情况和答疑,板演后老师讲评,

9、修正做题中的错误,强调解题规范格式。3.4总结与作业布置3.4.1课堂小结:知识小结:等比数列的定义,其通项公式及推广公式的推导和其应用。思想方法小结:类比思想,函数思想,整体思想。能力小结:培养观察、归纳,猜想能力,演绎推理能力和计算的技巧能力。意图:师生共同归纳本节课的主要内容及方法,小结采用提问的形式,让学生思考,这节课主要学习什么知识?解决什么问题?在学生回答的在基础上,老师总结。3.4.2作业布置(1)阅读课本(目的培养学生的良好习惯)(2)必修5第60页习题2.4A组2,3,4,5.4.板书设计5.教学设计反思 现代数学教学观念要求学生从“学会”向“会学”转变,本课从单调性与导数关

10、系的发现到应用都有意识地营造一个较为自由的空间,让学生能主动地去观察、猜测、发现、验证,积极地动手、动口、动脑,使学生在学知识的同时形成方法。特点:1、自始至终坚持以学生为主体,体现了学生是课堂中学习的主体。2、极大地训练了学生思维的全面性与深刻性,突出了对学生的思维训练和思维品质的培养。存在问题:几位落后生接受不了,而一些理解与思维能力好的学生不够吃的现象。 解决方法:抓中间顾两头,设计时尽可能考虑中等水平的学生,选几个比较难问题让一些理解与思维能力好的学生的潜能得以发挥,对落后生多加以启发和爱护,以及加强课后辅导。 6、评价分析:(1)整个设计依据了建构主义理论,符合学生的认知规律。 (2)用探究的活动形式突破了难点。 (3)教师以引路人的身份,引导学生去探究问题发生发展的过程,把主体地位交还给学生。 (4)学生积极主动地参与探索问题的情景中。

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3