收藏 分享(赏)

2015学高考数学一轮复习精品学案之圆柱、圆锥、圆台和球学案WORD版含答案.doc

上传人:高**** 文档编号:109026 上传时间:2024-05-25 格式:DOC 页数:8 大小:213.50KB
下载 相关 举报
2015学高考数学一轮复习精品学案之圆柱、圆锥、圆台和球学案WORD版含答案.doc_第1页
第1页 / 共8页
2015学高考数学一轮复习精品学案之圆柱、圆锥、圆台和球学案WORD版含答案.doc_第2页
第2页 / 共8页
2015学高考数学一轮复习精品学案之圆柱、圆锥、圆台和球学案WORD版含答案.doc_第3页
第3页 / 共8页
2015学高考数学一轮复习精品学案之圆柱、圆锥、圆台和球学案WORD版含答案.doc_第4页
第4页 / 共8页
2015学高考数学一轮复习精品学案之圆柱、圆锥、圆台和球学案WORD版含答案.doc_第5页
第5页 / 共8页
2015学高考数学一轮复习精品学案之圆柱、圆锥、圆台和球学案WORD版含答案.doc_第6页
第6页 / 共8页
2015学高考数学一轮复习精品学案之圆柱、圆锥、圆台和球学案WORD版含答案.doc_第7页
第7页 / 共8页
2015学高考数学一轮复习精品学案之圆柱、圆锥、圆台和球学案WORD版含答案.doc_第8页
第8页 / 共8页
亲,该文档总共8页,全部预览完了,如果喜欢就下载吧!
资源描述

1、高考资源网() 您身边的高考专家圆柱、圆锥、圆台和球自主学习 学习目标1在复习圆柱、圆锥概念的基础上了解圆台和球的概念,并认识由这些几何体组成的简单组合体2会用旋转的方法定义圆柱、圆锥、圆台和球会用集合的观点定义球3理解这几种几何体的轴截面的概念和它在解决几何体时的重要作用,提高动手操作能力 自学导引1圆柱、圆锥、圆台(1)_、_、_可以看作分别以矩形的一边、直角三角形的一直角边、直角梯形中垂直于底边的腰所在的直线为旋转轴,将矩形、直角三角形、直角梯形分别旋转一周而形成的曲面所围成的几何体(2)旋转轴叫做所围成的几何体的_;在轴上的这条边(或它的长度)叫做这个几何体的_;垂直于轴的边旋转而成的

2、圆面叫做这个几何体的_;不垂直于轴的边旋转而成的曲面叫做这个几何体的_,无论旋转到什么位置,这条边都叫做侧面的_2球(1)球面可以看作一个半圆绕着_所在的直线旋转一周所形成的曲面,球面围成的几何体,叫做_(2)球面也可以看作空间中到一个定点的距离等于_的点的集合(3)球面被经过球心的平面截得的圆叫做球的_;被不经过球心的平面截得的圆叫做球的_(4)在球面上,两点之间的最短距离,就是经过这两点的大圆在这两点间的一段劣弧的长度,我们把这个弧长叫做两点的_3组合体由柱、锥、台、球等基本几何体组合而成的几何体叫做_对点讲练知识点一圆柱、圆锥、圆台的有关概念例1下列命题中正确的是()A直角三角形绕一边旋

3、转得到的旋转体是圆锥B夹在圆柱的两个平行截面间的几何体还是一个旋转体C圆锥截去一个小圆锥后剩余部分是圆台D通过圆台侧面上一点,有无数条母线点评此类题应以圆柱、圆锥、圆台的定义为基础进行判断,同时要结合各种旋转体的结构特征,详细地分析,不可粗心大意此类题在做的时候容易只注意到旋转的问题,而忽视了以什么为旋转轴的问题,旋转轴不同则得到的旋转体也是不同的变式训练1下列说法:在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;圆柱的任意两条母线所在的直线是互相平行的其中正确的是()A

4、BCD知识点二旋转体中有关元素的计算问题例2圆台侧面的母线长为2a,母线与轴的夹角为30,一个底面的半径是另一个底面半径的2倍求两底面的半径与两底面面积之和点评解有关圆台的基本元素问题,一般要画出圆台的轴截面或将圆台还原为圆锥,有关元素之间的关系就体现出来了变式训练2已知圆锥的底面半径为r,高为h,正方体ABCDA1B1C1D1内接于圆锥,求这个长方体的棱长知识点三球中有关元素的计算问题例3球面上有M、N两点,在过M、N的球的大圆上,的度数为90,在过点M、N的球的小圆上,的度数120,又点M、N两点间的距离为 cm,求球心与小圆圆心的距离为多少?变式训练3设地球的半径为R,在北纬45圈上有两

5、个点A、B,A在西经40,B在东经50,求A、B两点间纬线圈的弧长及球面距离1在解圆台问题时,常将圆台转化为圆锥问题,即化台为锥2圆锥的母线、底面半径、高构成直角三角形,圆台的母线、高、上、下底面半径构成直角梯形解圆锥、圆台问题时,常归结为解此直角三角形或直角梯形3小圆的圆心与球心连线垂直于该小圆所在平面. 课时作业一、选择题1图中的图形折叠后的图形分别是()A圆柱、圆锥、棱柱 B圆柱、圆锥、棱锥C圆台、球、棱锥 D圆台、圆锥、棱柱2下列命题中不正确的是()A用平行于圆锥底面的平面截圆锥,截面与底面之间的部分是圆台B过球面上两个不同的点,只能作一个大圆C以直角梯形垂直于底的腰所在的直线为旋转轴

6、,另一腰和两底边旋转一周所围成的几何体是圆台D圆柱、圆锥、圆台的底面都是圆面3圆柱的轴截面(经过圆柱的轴所作的截面)是边长为5 cm的正方形ABCD,则圆柱侧面上从A到C的最短距离为()A10 cm B. cmC5 cm D5 cm4底面半径为2且底面水平放置的圆锥被过高的中点平行于底面的平面所截,则截得的截面圆的面积为()A B2C3 D45下图是由哪个平面图形旋转得到的()题号12345答案二、填空题6圆台上、下底面面积分别为25 cm2、64 cm2,高为12 cm,这个圆台的母线长为_cm.7用不过球心O的平面截球O,截面是一个球的小圆O1,若球的半径为4 cm,球心O与小圆圆心O1的

7、距离为2 cm,则小圆半径为_cm.8下列命题中:用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分叫棱台;棱台的各侧棱延长后一定相交于一点;圆台可以看作直角梯形绕与底边垂直的腰所在直线旋转而成的;半圆绕其直径所在直线旋转一周形成球正确命题的序号为_三、解答题9一个圆台的母线长为12 cm,两底面面积分别为4 cm2和25 cm2,求:(1)圆台的高;(2)截得此圆台的圆锥的母线长10一个圆锥的底面半径为4,高为12,在其中有一个高为x的内接圆柱(1)用x表示圆柱的轴截面面积S;(2)当x为何值时,S最大【答案解析】自学导引1(1)圆柱圆锥圆台(2)轴高底面侧面母线2(1)它的直径球(2

8、)定长(3)大圆小圆(4)球面距离3组合体对点讲练例1CA错误,应为直角三角形绕其一条直角边旋转得到的旋转体是圆锥若绕其斜边旋转得到的是两个圆锥构成的一个组合体B错误,没有说明这两个平行截面的位置关系,当这两个平行截面与底面平行时正确,其他情况则是错误的D错误,通过圆台侧面上一点,只有一条母线变式训练1D由母线的定义知正确,所以选D.例2解设圆台上底面半径为r,则下底面半径为2r,如图所示,ASO30,在RtSOA中,sin 30,SA2r.在RtSOA中,sin 30,SA4r.又SASAAA,即4r2r2a,ra.SS1S2r2(2r)25r25a2.圆台上底面半径为a,下底面半径为2a,

9、两底面面积之和为5a2.变式训练2解过内接正方体的一组对棱作圆锥的轴截面,如图所示设圆锥内接正方体的棱长为x,则在轴截面中,正方体的对角面A1ACC1的一组邻边的长分别为x和x.VA1C1VMN,.hx2rh2rx,x.即圆锥内接正方体的棱长为.例3解取MN的中点P,连接OP、O1P,由已知MON90,MO1N120,又OMON,O1MO1N,可求OP,O1P.OO.变式训练3解设45纬线圈的中心为O1,地球中心为O,如图所示,则AO1B405090.O1O圆O1所在平面,OO1O1A,OO1O1B.点A,B在北纬45圈上,OBO1OAO145.O1AO1BOAcos 45R.在RtAO1B中

10、,AO1BO1,ABAO1,AOB为等边三角形,AOB60.A,B两点间纬线圈的弧长为l1RR,A,B两点间球面距离为l2.课时作业1B2.B3.B4A设截面圆半径为r,由相似三角形的知识可知,所以r1,所以Sr2.5A637.289解(1)圆台的轴截面是等腰梯形ABCD(如图)由已知可得上底半径O1A2 cm,下底半径OB5 cm.又因为腰长为12 cm,所以高为AM 3 (cm)(2)设截得此圆台的圆锥的母线长为l,则由SAO1SBO可得,l20 cm.即截得此圆台的圆锥的母线长为20 cm.10解根据圆柱和圆锥的图形特征可作出它们的轴截面图(如图所示),设圆柱的底面半径为r,则由三角形相似的性质可知,解得:r4.(1)圆柱的轴截面面积为S2rx2xx28x,x(0,12);(2)Sx28x,x(0,12),S(x212x)(x6)224,x(0,12),当x6时,S最大为24.- 8 - 版权所有高考资源网

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3