ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:282.50KB ,
资源ID:107972      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-107972-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2015人教版高中数学选修4-5同步练习:3.1.2柯西不等式(3) .doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2015人教版高中数学选修4-5同步练习:3.1.2柯西不等式(3) .doc

1、选修4-5练习 3.1.2柯西不等式(3) 姓名 1、已知,求证: 2、已知是不全相等的正数,求证: 3、已知. 4、 设 求证: 5、已知实数满足, 求的取值范围. 6、已知 且 求证: 7、已知正数满足 证明 8、解方程组 9、若n是不小于2的正整数,试证:。 参考答案: 一般形式的柯西不等式: 设为大于1的自然数,(1,2,),则:, 其中等号当且仅当时成立(当时,约定,1,2,). 等号成立当且仅当 柯西不等式不仅在高等数学中是一个十分重要的 不等式,而且它对初等数学也有很可的指导作用,利用它能高远瞩、居高临下,从而方便 地解决一些中学数学中的有关问题。例1 解:由柯西不等式得,有 即

2、 由条件可得, 解得,当且仅当 时等号成立, 代入时, 时 例2解:由柯西不等式,得 又. 即不等式中只有等号成立. 从而由柯西不等式中等号成立的条件,得它与联立,可得 例3证明:由柯西不等式得,记为的面积,则故不等式成立。例4 证明:由柯西不等式,得 当且仅当时,上式取等号, 于是 。 例5 分析:这道题初看似乎无法使用柯西不等式,但改变其结构,我们不妨改为证:证明:为了运用柯西不等式,我们将写成于是 即 故我们进一步观察柯西不等式,可以发现其特点是:不等式左边是两个因式这和,其中每一个因式都是项平方和,右边是左边中对立的两两乘积之和的平方,证题时,只要能将原题凑成此种形式,就可以引用柯西不等式来证明。练习 1证: 2、 3 4、 5 6 7证明:利用柯西不等式 又因为 在此不等式两边同乘以2,再加上得:故8. 解:原方程组可化为 运用柯西不等式得, 两式相乘,得 当且仅当x=y=z=w=3时取等号。故原方程组的解为x=y=z=w=3.9、证明:证明: 所以求证式等价于 由柯西不等式有 于是: 又由柯西不等式有

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3