ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:376.50KB ,
资源ID:106073      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-106073-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(优化方案&高中同步测试卷&人教A数学必修2:高中同步测试卷(十三) WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

优化方案&高中同步测试卷&人教A数学必修2:高中同步测试卷(十三) WORD版含答案.doc

1、高中同步测试卷(十三)高考微专题高考中的点、直线、平面之间的位置关系(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的)1(2014高考辽宁卷)已知m,n表示两条不同直线,表示平面下列说法正确的是()A若m,n,则mn B若m,n,则mnC若m,mn,则n D若m,mn,则n2在下列命题中,不是公理的是()A平行于同一个平面的两个平面相互平行B过不在同一条直线上的三点,有且只有一个平面C如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D如果两个不重合的平面有一个公共点, 那么它们有且只有一

2、条过该点的公共直线3已知m,n为异面直线,m平面,n平面.直线l满足lm,ln,l,l,则()A且l B且lC与相交,且交线垂直于l D与相交,且交线平行于l4下列命题正确的是()A若两条直线和同一个平面所成的角相等,则这两条直线平行B若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D若两个平面都垂直于第三个平面,则这两个平面平行5设m,n是两条不同的直线,是两个不同的平面,下列命题中正确的是()A若,m,n,则mn B若,m,n,则mnC若mn,m,n,则 D若m,mn,n,则6(2014高考安徽卷)从正方体六个面的

3、对角线中任取两条作为一对,其中所成的角为60的共有()A24对 B30对 C48对 D60对7如图,正方体的底面与正四面体的底面在同一平面上,且ABCD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么mn()A8 B9 C10 D118(2014高考广东卷)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1l2,l2l3,l3l4,则下列结论一定正确的是()Al1l4 Bl1l4Cl1与l4既不垂直也不平行 Dl1与l4的位置关系不确定9(2014高考大纲全国卷)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A. B. C.

4、 D.10(2014高考四川卷)如图,在正方体ABCDA1B1C1D1中,点O为线段BD的中点设点P在线段CC1上,直线OP与平面A1BD所成的角为,则sin 的取值范围是()A. B.C. D.11如果平面外一条直线上有两点到这个平面的距离相等,则这条直线和这个平面的位置关系是()A平行 B相交 C平行或相交 D不可能垂直12已知空间四边形ABCD中,M、N分别为AB、CD的中点,则下列判断正确的是()AMN(ACBD) BMN(ACBD)CMN(ACBD) DMNAB,ACBCAB,ADBDACBC2AB矛盾故正确答案:15解析:因为BB1DD1,所以DD1与平面ACD1所成的角即为BB1

5、与平面ACD1所成的角,设其大小为,设正方体的棱长为1,则点D到平面ACD1的距离为,所以sin ,得cos .答案:16导学号:69960084解析:如图,过点E作EE1平面A1B1C1D1,交直线B1C1于点E1,连接D1E1,DE,在平面D1DEE1内过点P作PHEE1交D1E1于点H,连接C1H,则C1H即为点P到直线CC1的距离当点P在线段D1E上运动时,点P到直线CC1的距离的最小值为点C1到线段D1E1的距离,即为C1D1E1的边D1E1上的高h.因为C1D12,C1E11,所以D1E1,所以h.答案: 17证明:(1)因为ASAB,AFSB,垂足为F,所以F是SB的中点又因为E

6、是SA的中点,所以EFAB.因为EF平面ABC,AB平面ABC,所以EF平面ABC.同理EG平面ABC.又EFEGE,所以平面EFG平面ABC.(2)因为平面SAB平面SBC,且交线为SB,又AF平面SAB,AFSB,所以AF平面SBC.因为BC平面SBC,所以AFBC.又因为ABBC,AFABA,AF平面SAB,AB平面SAB,所以BC平面SAB.因为SA平面SAB,所以BCSA.18解:(1)证明:在折叠前的图形中,在等腰直角三角形ABC中,因为BC6,O为BC的中点,所以ACAB3,OCOB3.又因为CDBE,所以ADAE2.连接OD(图略),在OCD中,由余弦定理可得OD.在折叠后的图

7、形中,因为AD2,所以AO2OD2AD2,所以AOOD.同理可证AOOE.又ODOEO,所以AO平面BCDE.(2)如图,过O作OM垂直于CD的延长线于点M,连接AM.因为AO平面BCDE,CM平面BCDE,OM平面BCDE,所以AOCM,AOOM.因为AOOMO,所以CM平面AOM.因为AM平面AOM,所以CMAM,故AMO就是所求二面角的平面角在RtOMC中,OC3,OCM45,所以OM.在RtAOM中,因为AO,OM,所以AM ,所以cosAMO,所以二面角ACDB的平面角的余弦值为.19证明:(1)因为D,E分别为棱PC,AC的中点,所以DEPA.又因为PA平面DEF,DE平面DEF,

8、所以直线PA平面DEF.(2)因为D,E,F分别为棱PC,AC,AB的中点,PA6,BC8,所以DEPA,DEPA3,EFBC4.又因为DF5,故DF2DE2EF2,所以DEF90,即DEEF.又PAAC,DEPA,所以DEAC.因为ACEFE,AC平面ABC,EF平面ABC,所以DE平面ABC.又DE平面BDE,所以平面BDE平面ABC.20解:(1)证明:在直角梯形BCDE中,由DEBE1,CD2,得BDBC.由AC,AB2,得AB2AC2BC2,即ACBC.又平面ABC平面BCDE,从而AC平面BCDE,所以ACDE.又DEDC,从而DE平面ACD.(2)如图,作BFAD,与AD交于点F

9、,过点F作FGDE,与AE交于点G,连接BG,由(1)知DEAD,则FGAD.所以BFG是二面角BADE的平面角在直角梯形BCDE中,由CD2BC2BD2,得BDBC,又平面ABC平面BCDE,得BD平面ABC,从而BDAB.由于AC平面BCDE,得ACCD.在RtACD中,由DC2,AC,得AD.在RtAED中,由ED1,AD,得AE.在RtABD中,由BD,AB2,AD,得BF,AFAD,从而GF.在ABE,ABG中,利用余弦定理分别可得cosBAE,BG.在BFG中,cosBFG.所以,BFG,即二面角BADE的大小是.21导学号:69960085解:(1)证明:连接AC,交BD于点O,

10、连接PO.因为底面ABCD是菱形,所以ACBD,BODO.由PBPD知,POBD.又因为POACO,所以BD平面APC,因此BDPC.(2)因为E是PA的中点,所以V三棱锥PBCEV三棱锥CPEBV三棱锥CPABV三棱锥BAPC.由PBPDABAD2知,ABDPBD.因为BAD60,所以POAO,AC2,BO1.又PA,所以PO2AO2PA2,所以POAC,故SAPCPOAC3.由(1)知,BO平面APC,因此V三棱锥PBCEV三棱锥BAPCBOSAPC.22解:(1)证明:在三棱柱ABCA1B1C1中,BB1底面ABC,所以BB1AB.又因为ABBC,所以AB平面B1BCC1.所以平面ABE平面B1BCC1.(2)证明:取AB的中点G,连接EG,FG.因为E,F分别是A1C1,BC的中点,所以FGAC,且FGAC.因为ACA1C1,且ACA1C1,所以FGEC1,且FGEC1,所以四边形FGEC1为平行四边形所以C1FEG.又因为EG平面ABE,C1F平面ABE,所以C1F平面ABE.(3)因为AA1AC2,BC1,ABBC,所以AB.所以三棱锥EABC的体积VSABCAA112.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3