教师专用真题精编 (2018课标全国,14,5分)记Sn为数列an的前n项和.若Sn=2an+1,则S6=.答案-63解析解法一:由Sn=2an+1,得a1=2a1+1,所以a1=-1,当n2时,an=Sn-Sn-1=2an+1-(2an-1+1),得an=2an-1,an是首项为-1,公比为2的等比数列.S6=a1(1-q6)1-q=-(1-26)1-2=-63.解法二:由Sn=2an+1,得S1=2S1+1,所以S1=-1,当n2时,由Sn=2an+1得Sn=2(Sn-Sn-1)+1,即Sn=2Sn-1-1,Sn-1=2(Sn-1-1),又S1-1=-2,Sn-1是首项为-2,公比为2的等比数列,所以Sn-1=-22n-1=-2n,所以Sn=1-2n,S6=1-26=-63.