1、第九节圆锥曲线中的定点、定值、范围、最值问题考纲传真1.掌握解决直线与椭圆、抛物线的位置关系的思想方法;2.了解圆锥曲线的简单应用;3.理解数形结合的思想定点问题【例1】已知椭圆E:1(b0)的一个焦点与抛物线:y22px(p0)的焦点F相同,如图,作直线AF与x轴垂直,与抛物线在第一象限交于A点,与椭圆E相交于C,D两点,且|CD|.(1)求抛物线的标准方程;(2)设直线l不经过A点且与抛物线相交于N,M两点,若直线AN,AM的斜率之积为1,证明l过定点解(1)由椭圆E:1(b0),得b29c2,由题可知F(c,0),p2c,把xc代入椭圆E的方程,得yb2,yC.|CD|,解得c2.抛物线
2、的标准方程为y24cx,即y28x.(2)证明:由(1)得A(2,4),设M,N,kMA,kNA,由kMAkNA1,得y1y24(y1y2)480.(*)设直线l的方程为xmyt,由得y28my8t0,y1y28m,y1y28t,代入(*)式得t4m6,直线l的方程为xmy4m6m(y4)6,直线l过定点(6,4)规律方法圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法,根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关. 过抛物线C:y24x的焦点F且斜率为k的直线l交抛物线C于A
3、,B两点,且|AB|8.(1)求l的方程;(2)若A关于x轴的对称点为D,求证:直线BD过定点,并求出该点的坐标解(1)易知点F的坐标为(1,0),则直线l的方程为yk(x1),代入抛物线方程y24x得k2x2(2k24)xk20,由题意知k0,且(2k24)24k2k216(k21)0,设A(x1,y1),B(x2,y2),x1x2,x1x21,由抛物线的定义知|AB|x1x228,6,k21,即k1,直线l的方程为y(x1)(2)由抛物线的对称性知,D点的坐标为(x1,y1),直线BD的斜率kBD,直线BD的方程为yy1(xx1),即(y2y1)yy2y1y4x4x1,y4x1,y4x2,
4、x1x21,(y1y2)216x1x216,即y1y24(y1,y2异号),直线BD的方程为4(x1)(y1y2)y0,恒过点(1,0)定值问题【例2】已知动圆P经过点N(1,0),并且与圆M:(x1)2y216相切(1)求点P的轨迹C的方程;(2)设G(m,0) 为轨迹C内的一个动点,过点G且斜率为k的直线l交轨迹C于A,B两点,当k为何值时,|GA|2|GB|2是与m无关的定值?并求出该定值解(1)由题意,设动圆P的半径为r,则|PM|4r,|PN|r,可得|PM|PN|4rr4,点P的轨迹C是以M,N为焦点的椭圆,2a4,2c2,b,椭圆的方程为1.即点P的轨迹C的方程为1.(2)设A(
5、x1,y1),B(x2,y2),由题意知2m2,直线l:yk(xm),由得(34k2)x28k2mx4k2m2120,x1x2,x1x2,y1y2k(x1m)k(x2m)k(x1x2)2km,y1y2k2(x1m)(x2m)k2x1x2k2m(x1x2)k2m2,|GA|2|GB|2(x1m)2y(x2m)2y(x1x2)22x1x22m(x1x2)2m2(y1y2)22y1y2(k21).要使|GA|2|GB|2的值与m无关,需使4k230,解得k,此时|GA|2|GB|27.规律方法圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值:依题意设条件,得出与代数式参数有关的等式,代入
6、代数式,化简即可得出定值;(2)求点到直线的距离为定值:利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得;(3)求某线段长度为定值:利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得. 已知椭圆C:1(ab0)的左、右焦点分别为F1,F2,过F2的直线l交椭圆于A,B两点,ABF1的周长为8,且AF1F2的面积的最大时,AF1F2为正三角形(1)求椭圆C的方程;(2)若MN是椭圆C经过原点的弦,MNAB,求证:为定值解(1)由已知A,B在椭圆上,可得|AF1|AF2|BF1|BF2|2a,又ABF1的周长为8,所以|AF1|AF2|BF1|BF2|4a8,即a
7、2.由椭圆的对称性可得,AF1F2为正三角形当且仅当A为椭圆短轴顶点,则a2c,即c1,b2a2c23,则椭圆C的方程为1.(2)证明:若直线l的斜率不存在,即l:x1,求得|AB|3,|MN|2,可得4.若直线l的斜率存在,设直线l:yk(x1),设A(x1,y1),B(x2,y2),M(x3,y3),N(x4,y4),由可得(34k2)x28k2x4k2120,有x1x2,x1x2,|AB|,由ykx代入椭圆方程,可得x,|MN|24,即有4.综上可得,为定值4.范围问题【例3】已知m1,直线l:xmy0,椭圆C:y21,F1,F2分别为椭圆C的左、右焦点(1)当直线l过右焦点F2时,求直
8、线l的方程;(2)设直线l与椭圆C交于A,B两点,AF1F2,BF1F2的重心分别为G,H,若原点O在以线段GH为直径的圆内,求实数m的取值范围解(1)因为直线l:xmy0经过F2(,0),所以,得m22.又因为m1,所以m,故直线l的方程为xy10.(2)设A(x1,y1),B(x2,y2),由消去x,得2y2my10,则由m28m280,知m28,且有y1y2,y1y2.由于F1(c,0),F2(c,0),可知G,H.因为原点O在以线段GH为直径的圆内,所以0,即x1x2y1y20.所以x1x2y1y2y1y2(m21)0.解得m24(满足m28)又因为m1,所以实数m的取值范围是(1,2
9、)规律方法圆锥曲线中范围问题的求解方法(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系.(3)利用已知的或隐含的不等关系,构建不等式,从而求出参数的取值范围.(4)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围. 已知椭圆C:1(ab0)的离心率为,短轴长为2.(1)求椭圆C的标准方程;(2)设直线l:ykxm与椭圆C交于M,N两点,O为坐标原点,若kOMkON,求原点O到直线l的距离的取值范围解(1)由题意知2b2,b1.e,a2b2c2,a2
10、.椭圆的标准方程为y21.(2)设M(x1,y1),N(x2,y2),联立方程,得消去y,得(4k21)x28kmx4m240,(8km)24(4k21)(4m24)0,化简得m24k21,x1x2,x1x2,y1y2(kx1m)(kx2m)k2x1x2km(x1x2)m2.若kOMkON,则,即4y1y25x1x2,4k2x1x24km(x1x2)4m25x1x2,(4k25)4km4m20,即(4k25)(m21)8k2m2m2(4k21)0,化简得m2k2,由得0m2,k2.原点O到直线l的距离d,d21.又k2,0d2,0d.原点O到直线l的距离的取值范围是.最值问题【例4】(2019
11、太原模拟)已知椭圆M:1(a0)的一个焦点为F(1,0),左、右顶点分别为A,B.经过点F的直线l与椭圆M交于C,D两点(1)当直线l的倾斜角为45时,求线段CD的长;(2)记ABD与ABC的面积分别为S1和S2,求|S1S2|的最大值解(1)由题意,c1,b23,所以a24,所以椭圆M的方程为1,易求直线方程为yx1,联立方程,得消去y,得7x28x80,设C(x1,y1),D(x2,y2),288,x1x2,x1x2,所以|CD|x1x2|.(2)当直线l的斜率不存在时,直线方程为x1,此时ABD与ABC面积相等,|S1S2|0;当直线l的斜率存在时,设直线方程为yk(x1)(k0),联立
12、方程,得消去y,得(34k2)x28k2x4k2120,0,且x1x2,x1x2,此时|S1S2|2|y2|y1|2|y2y1|2|k(x21)k(x11)|2|k(x2x1)2k|,因为k0,上式当且仅当k时等号成立,所以|S1S2|的最大值为.规律方法圆锥曲线中最值问题的解决方法(1)代数法:从代数的角度考虑,通过建立函数、不等式等模型,利用二次函数法和基本不等式法、换元法、导数法等方法求最值.(2)几何法:从圆锥曲线几何性质的角度考虑,根据圆锥曲线几何意义求最值.(2017浙江高考)如图,已知抛物线x2y,点A,B,抛物线上的点P(x,y).过点B作直线AP的垂线,垂足为Q.(1)求直线
13、AP斜率的取值范围;(2)求|PA|PQ|的最大值解(1)设直线AP的斜率为k,kx,因为x0.设A(x1,y1),B(x2,y2),则x1x2,x1x2.而k1k2.由题设k1k21,故(2k1)x1x2(m1)(x1x2)0.即(2k1)(m1)0,解得k.当且仅当m1时,0,于是l:yxm,即y1(x2),所以l过定点(2,1)2(2013全国卷)平面直角坐标系xOy中,过椭圆M:1(ab0)右焦点的直线xy0交M于A,B两点,P为AB的中点,且OP的斜率为.(1)求M的方程;(2)C,D为M上两点,若四边形ABCD的对角线CDAB,求四边形ACBD面积的最大值解(1)设A(x1,y1),B(x2,y2),P(x0,y0),则1,1,1,由此可得1.因为x1x22x0,y1y22y0,所以a22b2.又由题意知,M的右焦点为(,0),故a2b23.因此a26,b23.所以M的方程为1.(2)由解得或因此|AB|.由题意可设直线CD的方程为yxn,设C(x3,y3),D(x4,y4)由得3x24nx2n260.于是x3,4.因为直线CD的斜率为1,所以|CD|x4x3| .由已知,四边形ACBD的面积S|CD|AB| ,当n0时,S取得最大值,最大值为.所以四边形ACBD面积的最大值为.