ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:766KB ,
资源ID:1050900      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1050900-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(浙江省金华十校2017-2018学年高一下学期期末调研考试数学试题卷 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

浙江省金华十校2017-2018学年高一下学期期末调研考试数学试题卷 WORD版含答案.doc

1、金华十校2017-2018学年第二学期期末调研考试高一数学试题卷第卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则( )A B C D2.直线与直线垂直,则的值为( )A B C D3.函数是( )A最小正周期为的奇函数 B最小正周期为的偶函数C最小正周期为的奇函数 D最小正周期为的偶函数4.在同一坐标系中,函数与函数的图象可能是( ) A B C D5.已知数列是各项均为正数的等比数列,数列是等差数列,且,则( )A BC D6.在中,角,的对边分别为,若(为非零实数),则下列结论错误的是( ) A当时,是直角三角形

2、B当时,是锐角三角形 C当时,是钝角三角形 D当时,是钝角三角形7.设实数,满足约束条件,则的取值范围是( )A B C D8.已知数列满足,是数列的前项和,则( )A BC数列是等差数列 D数列是等比数列9.记表示,中的最大数,若,则的最小值为( )A B C D10.设,若平面上点满足对任意的,恒有,则一定正确的是( )A B C D二、填空题:本大题有7涉题,多空题每题6分,单空题每题4分,共36分,把答案填在答题卷的相应位置.11.设函数,则函数的定义域是 ,若,则实数的取值范围是 12.直线:恒过定点 ,点到直线的距离的最大值为 13.已知函数,则的最小正周期是 ,当时,的取值范围是

3、 14.在中,角,所对的边分别为,.若,且,则角 ,的最大值是 15.已知,则向量,的夹角为 16.已知公差不为零的等差数列中,且,成等比数列,的前项和为,.则数列的前项和 17.若对任意的,存在实数,使恒成立,则实数的最大值为 三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.在平面直角坐标系中,是:上一点. (1)求过点的的切线方程;(2)设平行于的直线与相交于,两点,且,求直线的方程.19.已知函数的最大值为.(1)求的值及的单调递减区间;(2)若,求的值.20.在中,角,所对的边为,.(1)若,求的面积;(2)若,求的面积的最大值.21.已知,函数.(

4、1)当时,函数在上单调递增,求实数的取值范围;(2)当时,对任意的,都有恒成立,求的最大值.22.已知各项为正的数列满足,.(1)若,求,的值;(2)若,证明:.金华十校2017-2018学年第二学期调研考试高一数学卷参考答案一、选择题1-5: BDACB 6-10: DABCC二、填空题11. , 12. , 13. , 14. ,15. 16. 17. 三、解答题18.解:(1)圆的标准方程:,圆心,半径,切线方程为,即.(2),可设直线的方程为,即.又,圆心到直线的距离,即,解得或(不合题意,舍去),直线的方程为.19.解:(1).当时,.由,.得到,.所以的单调递减区间为,.(2),又,.20.解:(1),.(2).又,.(当且仅当时取等号).21.解:(1)当时,.由函数在上单调递增,得,化简得.实数的取值范围.(2)当且时,由得,化简得:,解得.实数的最大值是.22.解:(1),又数列各项为正.,;,;,.(2)时,.(i)先证:.,与同号,又,.(ii)再证:.,当时,.又,.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3