收藏 分享(赏)

2015高中数学(人教A版)选修2-3课时作业10.doc

上传人:高**** 文档编号:1044824 上传时间:2024-06-04 格式:DOC 页数:10 大小:139KB
下载 相关 举报
2015高中数学(人教A版)选修2-3课时作业10.doc_第1页
第1页 / 共10页
2015高中数学(人教A版)选修2-3课时作业10.doc_第2页
第2页 / 共10页
2015高中数学(人教A版)选修2-3课时作业10.doc_第3页
第3页 / 共10页
2015高中数学(人教A版)选修2-3课时作业10.doc_第4页
第4页 / 共10页
2015高中数学(人教A版)选修2-3课时作业10.doc_第5页
第5页 / 共10页
2015高中数学(人教A版)选修2-3课时作业10.doc_第6页
第6页 / 共10页
2015高中数学(人教A版)选修2-3课时作业10.doc_第7页
第7页 / 共10页
2015高中数学(人教A版)选修2-3课时作业10.doc_第8页
第8页 / 共10页
2015高中数学(人教A版)选修2-3课时作业10.doc_第9页
第9页 / 共10页
2015高中数学(人教A版)选修2-3课时作业10.doc_第10页
第10页 / 共10页
亲,该文档总共10页,全部预览完了,如果喜欢就下载吧!
资源描述

1、课时作业(十)1在3双皮鞋中任意抽取两只,恰为一双鞋的概率为()A.B.C. D.答案A解析.2某单位要邀请10位教师中的6位参加一个会议,其中甲、乙两位教师不能同时参加,则邀请的不同方法有()A84种 B98种C112种 D140种答案D解析由题意分析不同的邀请方法有:CCC11228140(种)3(2013四川)从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a,b,共可得到lgalgb的不同值的个数是()A9 B10C18 D20答案C解析从1,3,5,7,9这5个数中依次选出两个数的选法有A种,lgalgblg,又,选法有A218种,故选C.48名学生和2位老师站成一排合影,

2、2位老师不相邻的排法种数为()AAA BACCAA DAC答案A解析不相邻问题用插空法,先排学生有A种排法,老师插空有A种方法,所以共有AA种排法5某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天,若6位员工中的甲不值14日,乙不值16日,则不同的安排方法共有()A30种 B36种C42种 D48种答案C解析所有的安排方法为CCC90,甲值14日的安排方法为CC30,乙值16日的安排方法为CC30,甲值14日,乙值16日的安排方法为CC12,共有9030301242.6新学期开始,某校接受6名师大毕业生到校学习学校要把他们分配到三个年级,每个年级2人,

3、其中甲必须在高一年级,乙和丙均不能在高三年级,则不同的安排种数为()A18 B15C12 D9答案D解析先安排高三年级,从除甲、乙、丙外的3人中选2人,有C种选法;再安排高一年级,有C种方法,最后安排高二年级,有C种方法,由分步乘法计数原理,得共有CCC9种安排方法7某校在高二年级开设选修课,其中数学选修课开三个班,选课结束后,有4名同学要求改修数学,但每班至多可再接收2名同学,那么不同的分配方案有()A72种 B54种C36种 D18种答案B解析依题意,就要求改修数学的4名同学实际到三个班的具体人数分类计数:第一类,其中一个班接收2名、另两个班各接收1名,分配方案共有CCA36(种);第二类

4、,其中一个班不接收、另两个班各接收2名,分配方案共有CC18(种)因此,满足题意的不同的分配方案有361854(种),选B.8登山运动员10人,平均分为两组,其中熟悉道路的4人,每组都需要2人,那么不同的分配方法种数是()A60 B120C240 D480答案A解析先将4个熟悉道路的人平均分成两组有种再将余下的6人平均分成两组有种然后这四个组自由搭配还有A种,故最终分配方法有CC60(种)9由0,1,2,9这十个数字组成的无重复数字的四位数中,个位数字与百位数字之差的绝对值等于8的个数为_个答案210解析当个位与百位数字为0,8时,有AA;当个位与百位为1,9时,有AAA,根据分类计数原理,共

5、有AAAAA210个10将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有_种(用数字作答)答案1 080解析先将6位志愿者分组,共有种方法;再把各组分到不同场馆,共有A种方法由分步乘法计数原理知,不同的分配方案共有A1 080(种)11.如图所示,有五种不同颜色分别给A、B、C、D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有_种答案180解析按区域分四步:第一步A区域有5种颜色可选;第二步B区域有4种颜色可选;第三步C区域有3种颜色可选;第四步由于重复使用区域A中已有过的颜色,故也有3种颜色可选用由分

6、步计数原理,共有5433180(种)12某展室有9个展台,现有3件展品需要展出,要求每件展品独自占用1个展台,并且3件展品所选用的展台既不在两端又不相邻,则不同的展出方法有_种;若进一步要求3件展品所选用的展台之间间隔不超过2个展台,则不同的展出方法有_种答案6048解析依题意得,某展室有9个展台,现有3件展品需要展出,要求每件展品独自占用1个展台,并且3件展品所选用的展台既不在两端又不相邻,则不同的展出方法有A60种(注:从六个空展台所形成的五个间隔中任选三个间隔将3件展品进行排列即可);其中3件展品所选用的展台之间间隔超过两个展位的展出方法有2A12种,因此要求3件展品所选用的展台之间间隔

7、不超过两个展位的不同的展出方法有601248种132013年世锦赛上,中国乒乓球男队派出张济科及5名年轻队员参加比赛,团体比赛需要3名队员上场,如果最后一个出场比赛的不是张济科,那么不同的出场方式有_种答案100解析若张济科不上场,则有A60种不同的出场方式;若张济科上场,则有CAA40种不同的出场方式,因此一共有100种不同的出场方式14按下列要求把12个人分成3个小组,各有多少种不同的分法?(1)各组人数分别为2,4,6人;(2)平均分成3个小组;(3)平均分成3个小组,进入3个不同车间工作答案(1)CCC13 860;(2)5 775;(3)ACCC34 650.解析(3)分两步:第一步

8、平均分三组;第二步让三个小组分别进入三个不同车间,故有ACCC34 650种不同的分法重点班选做题15从集合1,2,3,10中,选出由5个数组成的子集,使得这5个数中的任何两个数的和不等于11,则这样的子集共有_个答案32解析因1102938475611,选出的5个数中任何两个数的和不等于11,所以从1,10,2,9,3,8,4,7,5,6这五组数每组中选1个数则这样的子集共有:CCCCC32.16山东鲁能、上海申花、天津泰达与杭州绿城四家中国足球俱乐部参加了2012年赛季亚洲足球俱乐部冠军联赛,为了打出中国足球的精神面貌,足协想派五名官员给这四支球队做动员工作,每个俱乐部至少派一名官员,且甲

9、、乙两名官名不能到同一家俱乐部,则不同的安排方法共有多少种(用数字作答)?答案216解析法一:根据题意,可根据甲、乙两人所去俱乐部的情况进行分类:(1)甲乙两人都单独去一个俱乐部,剩余三人中必有两人去同一家俱乐部,先从三人中选取两个组成一组,与其他三人组成四个小组进行全排列,则不同的安排方法有CA32472(种);(2)甲、乙两人去的俱乐部中有一个是两个人,从其剩余三人中选取一人与甲或乙组成一组,和其他三人形成四个小组进行全排列,则不同的安排方法有CCA2324144(种)所以不同的安排方法一共有72144216种法二:若甲、乙两人可以去同一家俱乐部,则先从五人中选取两人组成一组,与其他三人形

10、成四个小组进行全排列,则不同的安排方法共有CA1024240种;而甲、乙两人去同一家俱乐部的安排方法有CA24种所以甲、乙两人不能去同一家俱乐部的安排方法共有24024216种隔板法例1求方程x1x2x3x412的正整数解解析将12个完全相同的球排成一列,在它们之间形成的11个空隙中任选3个插入3块隔板,把球分为四组(如下图1)每一种分法所得球的数目依次为x1,x2,x3,x4.显然x1x2x3x412,故(x1,x2,x3,x4)是方程的一组解反之,方程的任何一组解(y1,y2,y3,y4),对应着唯一的一种在12个球之间插入隔板的方式(如下图2)图1图2故方程的解和插入隔板的方法一一对应,

11、即方程的解的组数等于插隔板的方法数C.探究(1)用“隔板法”来建立组合模型是求不定方程的正整数解的有效途径,如果将本例的“正整数解”改为“自然数解”,情形又如何呢?事实上只要令yixi1(i1,2,3,4),就将“自然解”转化为方程y1y2y3y416的正整数解,故有C组解(2)不定方程就是未知数的个数大于方程的个数,像方程x1x2xnm就是一个最简单的不定方程,这类问题的解法常用“隔板法”例2把7个大小完全相同的小球,放置在三个盒子中,允许有的盒子一个也不放(1)如果三个盒子完全相同,有多少种放置方法?(2)如果三个盒子各不相同,有多少种放置方法?解析(1)小球的大小完全相同,三个盒子也完全

12、相同,把7个小球分成三份,比如分成3个、2个、2个这样三份放入三个盒子中,不论哪一份小球放入哪一个盒子均是同一种放法,因此,只需将7个小球分成如下三份即可,即(7,0,0)、(6,1,0)、(5,2,0)、(5,1,1)、(4,3,0)、(4,2,1)、(3,3,1)、(3,2,2)共计有8种不同的放置方法(2)设三个盒子中小球的个数分别为x1,x2,x3,显然有:x1x2x37,于是,问题就转化为求这个不定方程的非负整数解,若令yixi1(i1,2,3)由y1y2y310,问题又成为求不定方程y1y2y310的正整数解的组数的问题,在10个1中间9个空档中,任取两个空档作记号,即可将10分成

13、三组,不定方程的解有C36组1(2010湖南理)在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为()A10 B11C12 D15答案B2北京市某中学要把9台型号相同的电脑送给西部地区的三所希望小学,每所小学至少得到2台,共有_种不同送法答案103设集合I1,2,3,4,5选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有()A50种 B49种C48种 D47种答案B4绍兴臭豆腐名闻天下,一外地学者来绍兴旅游,买了两串臭豆腐,每串3颗(如图)规定:每串臭豆腐只能自左向右一颗一颗地吃,且两串可以自由交替吃请问:该学者将这两串臭豆腐吃完,不同的吃法有()A6种B12种C20种 D40种答案C解析方法一(树形图)如图所示,先吃A的情况,共有10种,如果先吃D,情况相同,所以不同的吃法有20种方法二依题意;本题属定序问题,所以有20种

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3