ImageVerifierCode 换一换
格式:DOC , 页数:30 ,大小:518.50KB ,
资源ID:1027029      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1027029-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021高考数学(文)统考版二轮复习专题限时集训7 函数的概念、图象与性质 基本初等函数、函数与方程 导数的简单应用 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021高考数学(文)统考版二轮复习专题限时集训7 函数的概念、图象与性质 基本初等函数、函数与方程 导数的简单应用 WORD版含解析.doc

1、专题限时集训(七)函数的概念、图象与性质基本初等函数、函数与方程导数的简单应用1(2019全国卷)设f(x)为奇函数,且当x0时,f(x)ex1,则当x0时,f(x)()Aex1 Bex1Cex1 Dex1D由题意知f(x)是奇函数,且当x0时,f(x)ex1,则当x0时,x0,则f(x)ex1f(x),得f(x)ex1.故选D2(2017全国卷)函数f(x)ln(x22x8)的单调递增区间是()A(,2) B(,1)C(1,) D(4,)D由x22x80,得x4或x0,所以2a11无解;若a1,则log2(a1)3,解得a18,a7,所以f(6a)f(1)2112.综上所述,f(6a).故选

2、A7(2016全国卷)若函数f(x)xsin 2xasin x在(,)单调递增,则a的取值范围是()A1,1 BC DCf(x)1cos 2xacos x1(2cos2x1)acos xcos2xacos x,f(x)在R上单调递增,则f(x)0在R上恒成立,令cos xt,t1,1,则t2at0在1,1上恒成立,即4t23at50在1,1上恒成立,令g(t)4t23at5,则解得a,故选C8(2019全国卷)设f(x)是定义域为R的偶函数,且在(0,)单调递减,则()C因为f(x)是定义域为R的偶函数,所以ff(log34)f(log34)又因为log341220,且函数f(x)在(0,)上

3、单调递减,所以故选C9(2016全国卷)已知函数f(x)(xR)满足f(x)f(2x),若函数y|x22x3|与yf(x)图象的交点为(x1,y1),(x2,y2),(xm,ym),则xi()A0 Bm C2m D4mBf(x)f(2x),函数f(x)的图象关于直线x1对称又y|x22x3|(x1)24|的图象关于直线x1对称,两函数图象的交点关于直线x1对称当m为偶数时,i2m;当m为奇数时,i21m.故选B10(2017全国卷)已知函数f(x)x22xa(ex1ex1)有唯一零点,则a()A B C D1C法一:(换元法)f(x)x22xa(ex1ex1)(x1)2aex1e(x1)1,令

4、tx1,则g(t)f(t1)t2a(etet)1.g(t)(t)2a(etet)1g(t),函数g(t)为偶函数f(x)有唯一零点,g(t)也有唯一零点又g(t)为偶函数,由偶函数的性质知g(0)0,2a10,解得a.故选C法二:(等价转化法)f(x)0a(ex1ex1)x22x.ex1ex122,当且仅当x1时取“”x22x(x1)211,当且仅当x1时取“”若a0,则a(ex1ex1)2a,要使f(x)有唯一零点,则必有2a1,即a.若a0,则f(x)的零点不唯一故选C11(2019全国卷)曲线y3(x2x)ex在点(0,0)处的切线方程为_y3xy3(2x1)ex3(x2x)exex(3

5、x29x3),斜率ke033,切线方程为y3x.12(2017全国卷)设函数f(x)则满足f(x)f1的x的取值范围是_由题意知,可对不等式分x0,0三段讨论当x0时,原不等式为x1x1,解得x,x0.当01,显然成立当x时,原不等式为2x2x1,显然成立综上可知,x.1(2020郑州二模)设函数y的定义域为A,函数yln(3x)的定义域为B,则AB()A(,3) B(8,3)C3 D3,3)D由9x20,得3x3,A3,3,由3x0,得x3,B(,3),AB3,3)故选D2(2020福州一模)函数f(x)3xx35的零点所在的区间为()A(0,1) B C DB依题意,f(x)为增函数,f(

6、1)3150,f(2)322350,f3530,所以f(x)的零点所在的区间为,故选B3(2020洛阳二模)已知a(),b9,c3,则()Aabc BcbaCbac DacbAa()2,b3,ab,log23,bc,故abc,故选A4(2020合肥二模)已知f(x)为奇函数,当xf(2x1)的解集为()A(1,0) B(,1)C D(1,0)D根据题意,函数f(x)e|x1|,设g(x)e|x|,其定义域为x|x1,又由g(x)e|x|g(x),即函数g(x)为偶函数,当x(0,)时,g(x)ex,有g(x)ex,为增函数,g(x)的图象向右平移1个单位得到f(x)的图象,所以函数f(x)关于

7、x1对称,在(,1)上单调递减,在(1,)上单调递增由f(x)f(2x1),可得,解得1x且x0,即x的取值范围为(1,0),故选D16(2020道里区校级模拟)已知函数f(x),若函数F(x)f(x)mx有4个零点,则实数m的取值范围是()A BC DB依题意,函数yf(x)的图象与直线ymx有4个交点,当x2,4)时,x20,2),则f(x2)(x3)21,故此时f(x)(x3)2,取得最大值时对应的点为A;当x4,6)时,x22,4),则f(x2)(x5)2,故此时f(x)(x5)2,取得最大值时对应的点为B;作函数图象如下:由图象可知,直线OA与函数f(x)有两个交点,且kOA;直线O

8、B与函数f(x)有两个交点,且kOB;又过点(0,0)作函数在2,4)上的切线切于点C,作函数在4,6)上的切线切于点D,则kOC32,kOD.由图象可知,满足条件的实数m的取值范围为.故选B17(2020福建二模)已知f(x)是定义在R上的函数f(x)的导函数,且f(1x)f(1x)e2x,当x1时,f(x)f(x)恒成立,则下列判断正确的是()Ae5f(2)f(3) Bf(2)e5f(3)Ce5f(2)e5f(3)A令g(x),因为f(1x)f(1x)e2x,所以,即g(1x)g(1x),所以g(x)的图象关于直线x1对称,因为当x1时,f(x)f(x)恒成立,则g(x)0,所以g(x)在

9、(1,)上单调递增所以有g(3)g(2),g(2)g(3),即,即e5f(3)f(2),e5f(2)f(3),故选A18(2020牡丹江模拟)定义在R上的函数f(x)2为偶函数,af,bf,cf(m),则()Acab BacbCabc Dba0),若对任意两个不等的正实数x1,x2,都有2恒成立,则a的取值范围是()A(0,1 B(1,)C(0,1) D1,)D对任意两个不等的正实数x1,x2都有2恒成立,假设x1x2,f(x1)f(x2)2x12x2,即f(x1)2x1f(x2)2x2对于任意x1x20成立,令h(x)f(x)2x,h(x)在(0,)为增函数,h(x)x20在(0,)上恒成立

10、,x20,则a(2xx2)max1,故选D21(2020海南模拟)已知函数f(x)若关于x的方程(f(x)1)(f(x)m)0恰有5个不同的实根,则m的取值范围为()A(1,2) B(1,5)C(2,3) D(2,5)A由(f(x)1)(f(x)m)0得f(x)1或f(x)m.当f(x)1时,即x24x11,解得x0,x4,或22x1,解得x0(舍),若关于x的方程(f(x)1)(f(x)m)0恰有5个不同的实根,则f(x)m有3个根,即函数f(x)图象与ym有3个交点作出图象:由图可知,m(1,2),故选A22(2020湘潭一模)已知函数f(x),若函数g(x)f(f(x)恰有8个零点,则a

11、的值不可能为()A8 B9 C10 D12A易知,当a0时,方程f(x)0只有1个实根,从而g(x)f(f(x)不可能有8个零点,则a0,f(x)0的实根为2a,0,a.令f(x)t,则f(f(x)f(t)0,则t2a,0,a数形结合可知,直线ya与f(x)的图象有2个交点,直线y0与f(x)的图象有3个交点,所以由题意可得直线y2a与f(x)的图象有3个交点,则必有2a,又a0,所以a8,故选A23(2020宁波模拟)已知函数f(x)x2a,g(x)x2ex,若对任意的x21,1,存在唯一的x1,使得f(x1)g(x2),则实数a的取值范围是()A(e,4 BC DBf(x)x2a在的值域为

12、a4,a,但f(x)在递减,此时f(x).g(x)2xexx2exx(x2)ex,可得g(x)在1,0递减,(0,1递增,则g(x)在1,1的最小值为g(0)0,最大值为g(1)e,即值域为0,e对任意的x21,1,存在唯一的x1,使得f(x1)g(x2),可得0,e,可得a40ea,解得ea4.故选B24(2020洛阳模拟)已知f(x)是定义在R上的奇函数,f(x1)为偶函数,且函数f(x)与直线yx有一个交点(1,f(1),则f(1)f(2)f(3)f(2 018)f(2 019)()A2 B0 C1 D1B根据题意,f(x1)为偶函数,函数f(x)的图象关于直线x1对称,则有f(x)f(

13、x2),又由f(x)为奇函数,则f(x)f(x),则有f(x4)f(x2)f(x),即函数f(x)为周期为4的周期函数,又由f(x2)f(x),则f(1)f(3),f(2)f(4)0,故f(1)f(2)f(3)f(2 018)f(2 019)f(1)f(2)f(3)f(2)0.故选B25(2020南通模拟)已知函数f(x)ax3ln x,其中a为实数若函数f(x)在区间(1,)上有极小值,无极大值,则a的取值范围是_(0,1)函数f(x)ax3ln x,f(x)a,函数在区间(1,)上有极小值无极大值,f(x)0,即ax23x20在区间(1,)上有1个变号实根,且x1时,f(x)0,x1时,f

14、(x)0,结合二次函数的性质可知,解得,0a1.当a1时,f(x),因为x1,所以x10,x20,故当x2时,f(x)0,函数单调递增,当1x2时,f(x)0,函数单调递减,故当x2时,函数取得极小值,满足题意,当a0时,f(x)在(1,)单调递减,没有极值26(2020大连模拟)设函数f(x)ln(1|x|),则使得f(x)f(2x1)成立的x的取值范围是_由题意得,函数f(x)ln(1|x|)的定义域为R,因为f(x)f(x),所以函数f(x)为偶函数,当x0时,f(x)ln(1|x|)为单调递增函数,所以根据偶函数的性质可知:使得f(x)f(2x1)成立,则|x|2x1|,解得x1.27

15、(2020南阳模拟)已知函数f(x)对xR满足f(x2)f(x)2f(1),且f(x)0,若yf(x1)的图象关于x1对称,f(0)1,则f(2 019)f(2 020)_.3因为yf(x1)的图象关于x1对称,所以yf(x)的图象关于x0对称,即yf(x)是偶函数,对于f(x2)f(x)2f(1),令x1,可得f(1)f(1)2f(1),又f(x)0,所以f(1)2,则f(1)f(1)2.所以函数f(x)对xR满足f(x2)f(x)4.所以f(x4)f(x2)4.所以f(x)f(x4),即f(x)是周期为4的周期函数所以f(2 019)f(45043)f(3)2,f(2 020)f(4505

16、)f(0)1.所以f(2 019)f(2 020)3.28. (2020衡水模拟)若存在a0,使得函数f(x)6a2lnx与g(x)x24axb的图象在这两函数图象的公共点处的切线相同,则b的最大值为_设曲线yf(x)与yg(x)的公共点为g(x0,y0),因为f(x),g(x)2x4a,所以2x04a,化简得x2ax03a20,解得x0a或3a.又x00,且a0,则x03a.因为f(x0)g(x0)所以x4ax0b6a2ln x0,b3a26a2ln 3a(a0)设h(a)b,所以h(a)12a(1ln 3a),令h(a)0,得a,所以当0a时,h(a)0;当a时,h(a)0.即h(a)在上

17、单调递增,在上单调递减,所以b的最大值为h.1函数f(x)ln xax在x2处的切线与直线axy10平行,则实数a()A1 B C D1Bf(x)a,kf(2)aa,所以a.故选B2设函数f(x)若f(x)是奇函数,则g(e2)()A3 B2 C1 D1Af(x)是奇函数,f(e2)f(e2)ln e22,g(e2)f(e2)13,故选A3已知alog5 2,blog7 2,c0.5a2,则a,b,c的大小关系为()Abac BabcCcba DcabA1log25log27,1log52log72,又0.5a20.512,则cab,故选A4已知函数f(x),则函数yf(x)3的零点个数是()

18、A1 B2 C3 D4B函数f(x),所以图象如图,由图可得:yf(x)与y3只有两个交点;即函数yf(x)3的零点个数是2,故选B5已知函数f(x)为偶函数,当x0时,f(x)x2ln(x),则曲线yf(x)在x1处的切线方程为()Axy0 Bxy20Cxy20 D3xy20A根据偶函数的图象关于y轴对称,所以切点关于y轴对称,切线斜率互为相反数f(1)f(1)1,故切点为(1,1),x0时,f(x)2x,所以f(1)f(1)1.故切线方程为y1x1,即xy0.故选A6设m,n为实数,则“2m2n”是“logmlogn”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件B

19、2m2nmn,但mn不能推出logmlogn,因为m,n可以为负数由logmlogn可得mn.故“2m2n”是“logmlogn”的必要不充分条件故选B7下列函数中,既是奇函数,又在(0,1)上是增函数的是()Af(x)xln x Bf(x)exexCf(x)sin 2x Df(x)x3xB对于A,定义域不关于原点对称,非奇非偶函数;对于B,f(x)f(x),且f(x)exex0,即f(x)是奇函数在(0,1)上是增函数;对于C,f(x)f(x)奇函数,正弦函数sin 2x周期为,易知在(0,1)上先增后减;对于D,f(x)f(x) 奇函数,易知f(x)在(0,1)上先减后增,故选B8已知函数

20、f(x),那么()A f(x)有极小值,也有大极值B f(x)有极小值,没有极大值C f(x)有极大值,没有极小值D f(x)没有极值Cf(x)的定义域为R,f(x),当x3时,f(x)0,当x3时,f(x)0,所以f(x)在(,3)单调递增,在(3,)单调递减,所以f(x)有极大值f(3),没有极小值,故选C9已知a为正实数,若函数f(x)x33ax22a2的极小值为0,则a的值为()A B1 C D2A由已知f(x)3x26ax3x(x2a),又a0,所以由f(x)0得x0或x2a,由f(x)0得0x2a,所以f(x)在x2a处取得极小值0,即f(x)极小值f(2a)(2a)33a(2a)

21、22a24a32a20,又a0,解得a,故选A10已知f(x)x3x26x1在(1,1)单调递减,则m的取值范围为()A3,3 B(3,3) C5,5 D(5,5)Cf(x)x3x26x1在(1,1)单调递减,当x(1,1)时,f(x)x2mx60恒成立, ,即,解得5m5,m的取值范围为5,5,故选C11已知函数f(x)|ln x|,若0ab,且f(a)f(b),则2ab的取值范围是()A3,) B(3,)C2,) D(2,)C0ab且f(a)f(b),结合f(x)|ln x|的图象易知0a1b且ln aln b,ln(ab)0,则ab1.2ab22,当且仅当2ab0,即a,b时取等号2ab

22、的取值范围是2,)故选C12已知定义在R上的函数f(x)在1,)上单调递减,且f(x1)为偶函数,若f(2)1,则满足f(x1)1的x的取值范围是()A1,3 B1,3C0,4 D2,2B由f(x1)为偶函数,所以f(x1)f(x1),所以可得函数f(x)的图象关于直线x1对称,又函数f(x)在1,)上单调递减,所以可得函数f(x)在(,1)单调递增,因为f(0)f(2)1,所以0x12,解得1x3,故选B13偶函数f(x)关于点(1,0)对称,当1x0时,f(x)x21,则f(2 020)()A2 B0 C1 D1Df(x)为偶函数,f(x)关于直线x0对称,又f(x)关于点(1,0)对称,

23、f(x)的周期为4|10|4,f(2 020)f(2 0204505)f(0),又当1x0时,f(x)x21,f(2 020)f(0)1.故选D14定义在R上的偶函数f(x)的导函数为f(x),且当x0时,xf(x)2f(x)0,则()A B9f(3)f(1)C DD令g(x)x2f(x),当x0时,xf(x)2f(x)0,则g(x)2xf(x)x2f(x)x2f(x)f(x)0,即g(x)在(0,)上单调递减,因为f(x)f(x),所以g(x)(x)2f(x)x2f(x)g(x),即g(x)为偶函数,根据偶函数的对称性可知,g(x)在(,0)上单调递增,g(e)g(3),所以,故选D15设函

24、数f(x)则下列结论错误的是()A函数f(x)的值域为RB函数f(|x|)为偶函数C函数f(x)为奇函数D函数f(x)是定义域上的单调函数A根据题意,依次分析选项:对于A,函数f(x),当x0时,f(x)2x12,当x0时,f(x)2x1(2x1)2,其值域不是R,A错误;对于B,函数f(|x|),其定义域为x|x0,有f(|x|)f(|x|),函数f(|x|)为偶函数,B正确;对于C,函数f(x),当x0时,x0,有f(x)2x1,f(x)f(x)2x1,反之当x0时,x0,有f(x)2x1,f(x)f(x)2x1,综合可得:f(x)f(x)成立,函数f(x)为奇函数,C正确;对于D,函数f

25、(x),当x0时,f(x)2x12,f(x)在(0,)为增函数,当x0时,f(x)2x12,f(x)在(,0)上为增函数,故f(x)是定义域上的单调函数;故选A16为实现国民经济新“三步走”的发展战略目标,国家加大了扶贫攻坚的力度,某地区在2015年以前的年均脱贫率(脱贫的户数占当年贫困户总数的比)为70%,2015年开始全面实施“精准扶贫”政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加户数占2019年贫困总户数的比)及该项目的脱贫率见表:实施项目种植业养殖业工厂就业参加占户比45%45%10%脱贫率96%96%90%那么2019年的年脱贫率是实施“精准扶贫

26、”政策前的年均脱贫率的()A倍 B倍 C倍 D倍B2019年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的倍故选B17定义在R上的偶函数f(x),对x1,x2(,0),且x1x2,有0成立,已知af(ln ),bf(e),cf,则a,b,c的大小关系为()Abac BbcaCcba DcabA定义在R上的偶函数f(x),对x1,x2(,0),且x1x2,有0成立,可得f(x)在x(,0)单调递增,所以f(x)在(0,)单调递减;因为1ln 2,0e1,所以af(ln )bf(e),因为3log2log2log22,cff(2,3),所以ca,故选A18设aln 3,则blg 3,则()Aab

27、abab BabababCababab DabababA因为(ab)(ab)2b2lg 30,所以abab,abln 3lg 30,log31,所以abab,所以ababab,故选A19(2020石嘴山二模)已知函数f(x),函数F(x)f(x)b有四个不同的零点x1,x2,x3,x4,且满足:x1x2x3x4,则 的值是()A4 B3 C2 D1 A作出f(x)的函数图象如图所示:由图象知x1x24,x3x41,4.故的值是4.故选A20(2020沙坪坝区校级模拟)已知定义域为R的函数f(x),对任意xR有f(x)f(x)(f(x)是函数f(x)的导函数),若yf(x)1为奇函数,则满足不等

28、式f(x)ex的x的取值范围是()A(,0) B(,1)C(0,) D(1,)C令g(x),又f(x)f(x),则g(x)0,函数g(x)在R上单调递增yf(x)1为奇函数,f(0)10,g(0)1.不等式1,即g(x)g(0)的解集为x|x0故选C21衡东土菜辣美鲜香,享誉三湘某衡东土菜馆为实现100万元年经营利润目标,拟制定员工的奖励方案:在经营利润超过6万元的前提下奖励,且奖金y(单位:万元)随经营利润x(单位:万元)的增加而增加,但奖金总数不超过3万元,同时奖金不能超过利润的20%.下列函数模型中,符合该点要求的是()(参考数据:1.0151004.432,lg 111.041)Ay0

29、.04x By1.015x1Cytan Dylog11(3x10)D对于函数:y0.04x,当x100时,y43,不符合题意;对于函数:y1.015x1,当x100时,y3.4323,不符合题意;对于函数:ytan,不满足递增,不符合题意;对于函数:ylog11(3x10),满足x(6,100,增函数,且ylog11(310010)log11290log1113313,结合图象,yx与ylog11(3x10)的图象如图所示,符合题意,故选D22设函数f(x)则使得f(x1)f(2x1)成立的x的取值范围是()A(0,2) B(2,)C(,0) D(2,)A当x0时,f(x)x2exf(x),同

30、理当x0,f(x)(x)2exf(x),所以函数f(x)为偶函数又当x0时,f(x)x(x2)ex0,所以f(x)在0,)上单调递增所以要使f(x1)f(2x1),则需|x1|2x1|,两边平方并化简得x22x0,解得0x2.故选A23已知函数f(x)若|f(x)|axa0恒成立,则实数a的取值范围是()A B0,1C0,2 D1,)C函数f(x)若|f(x)|axa0恒成立,即|f(x)|axa恒成立,在坐标系中画出函数y|f(x)|的图象如图,而yaxa表示恒过(1,0)的直线系,由图象可知,要使|f(x)|axa0恒成立,只需yx21在x1时,函数的图象在yaxa的上方,所以yx21的导

31、数为:y2x,在x1处的切线的斜率为2,所以a2,并且a0.所以a0,2故选C24已知函数f(x)e1x2,则使f(2x)f(x1)成立的x的取值范围是()A(1,)B(1,)C(,1)DAf(x)e1(x)2e1x2f(x),函数f(x)为偶函数,又当x0时,ye1x2与y均为增函数,当x0时,f(x)e1x2为增函数,f(2x)f(x1)等价于|2x|x1|,解得:x或x1,即x的取值范围为(1,),故选A25已知函数f(x)exexln(e|x|1),则()Af()f()fBf()f()fCff()f()Df()ff()B因为f(x)exexln(e|x|1),则f(x)exexln(e

32、|x|1)f(x),当x0时,f(x)exexln(ex1),则f(x)ex0在x0时恒成立,故f(x)在(0,)上单调递增,因为f()f(),f()f(),ff(log54),且1log540,所以f()f()f(log54)故选B26已知函数f(x)e|x|lg图象关于原点对称则实数的a的值为_2依题意有f(x)f(x)0, 又f(x)e|x|lg, 所以f(x)f(x)e|x|lg14x2a2x20,故a24,a2.27现有一块边长为a的正方形铁片,铁片的四角截去四个边长均为x的小正方形,然后做成一个无盖方盒,该方盒容积的最大值是_a3由题意,容积V(x)(a2x)2x,0x,则V(x)

33、2(a2x)(2x)(a2x)2(a2x)(a6x),由V(x)0,得x或x(舍去),当x时,V(x)0,V(x)单调递增,当x时,V(x)0,V(x)单调递减,则x为V在定义域内唯一的极大值点也是最大值点,此时Vmaxa3.28一题两空已知函数f(x)ax(b0)的图象在点P(1,f(1)处的切线与直线x2y10垂直,则a与b的关系为a_(用b表示),若函数f(x)在区间上是单调递增,则b的最大值等于_b2f(x)ax(b0),f(x)a,f(1)ab ,函数f(x)ax(b0)的图象在点P(1,f(1)处的切线与直线x2y10垂直,ab2,即ab2.若函数f(x)在区间上单调递增,则f(x

34、)a0恒成立,即b2恒成立,整理得:(x2)min,解得0b,bmax.29函数f(x)xsin x在上的最小值和最大值分别是_,1由题意得,f(x)cos x,令f(x)0,解得x,令f(x)0,解得0x,f(x)在上递减,在上递增f(x)minf,而f(0)0,f1,故f(x)在区间上的最小值和最大值分别是,1.30定义在R上的函数f(x)满足f(x)f(x)2ex(e为自然对数的底数),其中f(x)为f(x)的导函数,若f(2)4e2,则xex的解集为_(,2)f(x)f(x)2ex,构造函数g(x)2x,则g(x)220,g(x)0,g(x)在R上为减函数xex2xg(x)0,又f(2)4e2,g(2)440,g(x)g(2),x2,xex的解集为(,2)

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3