1、拉萨市2019届高三第三次模拟考试试卷文科数学一、选择题。在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A=1,2,3,4,B=2,4,6,8,则AB中元素的个数为A. 1B. 2C. 3D. 4【答案】B【解析】由题意可得,故中元素的个数为2,所以选B.【名师点睛】集合基本运算的关注点:(1)看元素组成集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图2.复平面内表示复数z=i(2+i)的点位于A.
2、 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】,则表示复数的点位于第三象限. 所以选C.【名师点睛】对于复数的四则运算,首先要切实掌握其运算技巧和常规思路,如.其次要熟悉复数的相关基本概念,如复数的实部为、虚部为、模为、对应的点为、共轭复数为3.记为等差数列的前项和,若,则( )A. 8B. 9C. 16D. 15【答案】D【解析】【分析】根据等差数列的通项公式和前n项和公式,求得公差,再由等差数列的通项公式,即可求解【详解】由题意,因为,即,解得,所以,故选D【点睛】本题主要考查了等差数列的通项公式,以及前n项和公式的应用,其中解答中熟记等差数列的通项公式和前n项和公
3、式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题4.双曲线的离心率为( )A. B. C. D. 【答案】D【解析】【分析】由双曲线,求得,再由离心率的公式,即可求解【详解】由双曲线,可得,则,所以双曲线的离心率为,故选D【点睛】本题主要考查了双曲线的标准方程及其简单的几何性质求解,其中解答中熟记双曲线的标准方程,以及双曲线的几何性质,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题5.英国统计学家辛普森1951年提出了著名的辛普森悖论,下面这个案例可以让我们感受到这个悖论.有甲乙两名法官,他们都在民事庭和行政庭主持审理案件,他们审理的部分案件被提出上诉.记录这些被上述
4、案件的终审结果如下表所示(单位:件):法官甲法官乙终审结果民事庭行政庭合计终审结果民事庭行政庭合计维持29100129维持9020110推翻31821推翻10515合计32118150合计10025125记甲法官在民事庭、行政庭以及所有审理的案件被维持原判的比率分别为,和,记乙法官在民事庭、行政庭以及所有审理的案件被维持原判的比率分别为,和,则下面说法正确的是( )A. ,B. ,C. ,D. ,【答案】D【解析】【分析】分别求出法官甲、乙民事庭维持原判的案件率为,行政庭维持原判的案件率,总体上维持原判的案件率为的值,即可得到答案【详解】由题意,可得法官甲民事庭维持原判的案件率为,行政庭维持原
5、判的案件率,总体上维持原判的案件率为;法官乙民事庭维持原判的案件率为,行政庭维持原判的案件率为,总体上维持原判的案件率为所以,选 D【点睛】本题主要考查了古典概型及其概率公式的应用,其中解答中认真审题,根据表中的数据,利用古典概型及其概率的公式分别求解相应的概率是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题6.函数在上零点的个数是( )A. 2个B. 3个C. 4个D. 5个【答案】C【解析】【分析】令,即,即,解得,再由,即可求解,得到答案【详解】由函数,令,即,即,所以,又由,所以,即函数在上有4个零点,故选C【点睛】本题主要考查了函数与方程的应用,以及三角函数的化简求值问题
6、,其中解答中熟记函数零点的定义,准确利用正切函数的性质求解是解答的关键,着重考查了运算与求解能力,属于基础题7.执行如图所示的程序框图,输出的值为( )A. B. C. D. 【答案】A【解析】【分析】执行循环结构的程序框图,逐次计算,根据判断条件终止循环,即可求解,得到答案【详解】由题意,执行如图所示的程序框图,可得:第1次循环:,不满足判断条件;第2次循环:,满足判断条件;终止循环,输出计算的结果,故选A【点睛】本题主要考查了循环结构的程序框图的计算与输出结果,其中解答中正确理解循环结构的程序框图的计算功能,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题8.在某次高中学科竞赛中
7、,4000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中有误的是( )A. 成绩在分的考生人数最多B. 不及格的考生人数为1000人C. 考生竞赛成绩的平均分约70.5分D. 考生竞赛成绩的中位数为75分【答案】D【解析】【分析】根据频率分布直方图中数据,逐项判断即可得出结果.【详解】A选项,由频率分布直方图可得,成绩在的频率最高,因此考生人数最多,故A正确;B选项,由频率分布直方图可得,成绩在的频率为,因此,不及格的人数为,即B正确;C选项,由频率分布直方图可得:平均分等于,即C正确;D选项,因为成绩在频率为,由的频率为,所以中位数为,故
8、D错误.故选D【点睛】本题主要考查频率分布直方图,会分析频率分布直方图即可,属于常考题型.9.将棱长为2的正方体木块削成一个体积最大的球,则该球的体积为( )A. B. C. D. 【答案】A【解析】体积最大的球即正方体的内切球,因此,体积为,故选A.点睛:本题考查学生的是球的组合体问题,属于基础题目.根据题意,正方体木块削成体积最大的球,即正方体的内切球,球的直径即正方体的边长,从而可得球的体积.解决内切球问题和平面图形的内切圆问题,基本的方法为等体积和等面积.10.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A. B. C. D. 【答案】C【解析】试题分析:由三
9、视图分析可知,该几何体的表面积为圆锥的表面积与圆柱的侧面积之和。,所以几何体的表面积为。考点:三视图与表面积。【此处有视频,请去附件查看】11.若曲线在点处的切线方程为,且点在直线(其中,)上,则的最小值为( )A. B. C. D. 【答案】C【解析】【分析】设A(s,t),求得函数y的导数可得切线的斜率,解方程可得切点A,代入直线方程,再由基本不等式可得所求最小值【详解】解:设A(s,t),yx32x2+2的导数为y3x24x,可得切线的斜率为3s24s,切线方程为y4x6,可得3s24s4,t4s6,解得s2,t2或s,t,由点A在直线mx+nyl0(其中m0,n0),可得2m+2n1成
10、立,(s,t,舍去),则(2m+2n)()2(3)2(3+2)6+4,当且仅当nm时,取得最小值6+4,故选:C【点睛】本题考查导数的运用:求切线斜率,以及基本不等式的运用:求最值,考查运算能力,属于基础题12.如图,两个圆锥和一个圆柱分别有公共底面,且两圆锥的顶点和底面的圆周都在同一球面上.若圆柱的侧面积等于两个圆锥的侧面积之和,且该球的表面积为,则圆柱的体积为( )A. B. C. D. 【答案】C【解析】【分析】因为球的表面积为,可求出球半径R.设圆锥的高,底面半径.根据圆柱的侧面积等于两个圆锥的侧面积之和可得x,y值,然后求出圆柱的体积.【详解】解析:设球的半径为,则,解得.如图,设圆
11、锥的高,底面半径.则圆锥的母线长,圆柱的高为,依题意可得,解得所以圆柱的体积,故选C. 【点睛】本题考查几何组合体的体积,表面积的计算,基础题.二、填空题。13.若实数,满足,则的最小值为_.【答案】-3【解析】【分析】画出不等式组所表示的平面区域,结合图象,确定目标函数的最优解,代入即可求解【详解】由题意,画出不等式组所表示的平面区域,如图所示,目标函数,可化为直线,直线过点A时,此时直线在y轴上截距最小,目标函数取得最小值,又由,解得,所以目标函数的最小值为【点睛】本题主要考查简单线性规划求解目标函数的最值问题其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的
12、最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题14.已知向量,若与垂直,则_.【答案】【解析】【分析】利用向量垂直的充要条件:数量积为0,列出方程,即可得解【详解】依题意,向量与垂直,故,即,解得【点睛】解决与向量垂直有关的问题,常利用向量垂直的充要条件:数量积为0进行解决或者利用数形结合可得.15.ABC的内角A,B,C的对边分别为a,b,c,若cos A=,cos C=,a=1,则b=_.【答案】【解析】试题分析:因为,且为三角形的内角,所以,又因为,所以.【考点】 正弦定理,两角和、差的三角函数公式【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合
13、适,或是两个定理都要用,要抓住能够利用某个定理的信息一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到【此处有视频,请去附件查看】16.已知是椭圆的对称中心,是的焦点,以为圆心,为半径的圆与的一个交点为.若与的长度之比为,则的离心率等于_.【答案】【解析】【分析】因为为正三角形,故可根据椭圆的定义可得的关系,从而得到离心率.我们也可以根据已知条件得到 ,把代入椭圆整理,得,由此能够求出椭圆的离心率【详解】解法1:如图,设,因为与的长度之比为2:1,故,所以为正三角形,故.在等腰
14、中,求得.根据椭圆的定义,可得,故椭圆的离心率.解法2:如图,设椭圆的方程为,.由题意,易知,所以为正三角形,故,因为点在椭圆上,所以,即,即,整理,得,即,解得(舍去)或,所以. 【点睛】本题考查椭圆的本题考查了椭圆的定义,性质和应用,解题时要认真审题,注意公式的灵活运用三、解答题:解答应写出文字说明、证明过程或演算步骤。17.设数列的前项和为,已知,.(1)证明:为等比数列;(2)记,数列的前项和为.若,求的取值范围.【答案】(1)见解析(2)【解析】【分析】(1)利用与关系可得.(2)先写出的表达式,通过裂项求和得出,利用单调性得解.【详解】解:(1)由已知,得, , 当时,所以 , 所
15、以 ,又, 所以,所以是首项,公比的等比数列. (2)由(1)可知, 所以. , , 因为,所以,从而, 因为, 所以的取值范围为.【点睛】本题考查数列性质的判定,通项公式求解,裂项相消求和数列中的恒成立问题,均属于数列中重要而又基本的知识和能力要求18.某校高三共有1000位学生,为了分析某次的数学考试成绩,采取随机抽样的方法抽取了50位高三学生的成绩进行统计分析,得到如图所示频数分布表:分组频数31118126(1)根据频数分布表计算成绩在的频率并计算这组数据的平均值(同组的数据用该组区间的中点值代替);(2)用分层抽样的方法从成绩在和的学生中共抽取5人,从这5人中任取2人,求成绩在和中各
16、有1人的概率.【答案】(1) (2)【解析】【分析】(1)根据频率分布表知成绩在内的人数,即可求解其概率,再根据平均数的计算公式,即可求解平均数;(2)根据分层抽样得应在和中分别抽取3人和2人,利用列举法求得基本事件的总数和所求事件包含基本事件的个数,利用古典概型的概率计算公式,即可求解【详解】(1)根据频率分布表知成绩在内的概率为,.(2)根据分层抽样得应在和中分别抽取3人和2人,将中的3人编号为1,2,3,将中的2人编号为,则此事件中的所有基本事件为,共10个,记成绩在和中各有1人为事件,事件包含的基本事件有6个,则.【点睛】本题主要考查了频率分布表的应用,以及古典概型及其概率的计算问题,
17、其中解答中熟记频率分布表中的频率与平均数的计算公式,以及准确利用列举法求得基本事件的总数是解答的关键,着重考查了推理与运算能力,属于基础题19.如图1,在梯形中,过,分别作的垂线,垂足分别为,已知,将梯形沿,同侧折起,使得平面平面,平面平面,得到图2.(1)证明:平面;(2)求三棱锥的体积.【答案】(1)见证明;(2)【解析】【分析】(1)设,取中点,连接,证得,且,得到四边形为平行四边形,得出,利用线面平行的判定定理,即可证得平面.(2)证得,得到点到平面的距离等于点到平面的距离,再利用锥体的体积公式,即可求解.【详解】(1)设,取中点,连接,四边形为正方形,为中点,为中点,且,因为平面平面
18、,平面平面,平面,所以平面,又平面平面,平面平面,同理,平面,又,且,四边形为平行四边形,平面,平面,平面.(2)因为,平面,平面,所以点到平面的距离等于点到平面的距离.三棱锥的体积公式,可得.【点睛】本题主要考查了线面位置关系的判定与证明,以及三棱锥的体积的计算,其中解答中熟记线面位置关系的判定定理和性质定理,以及合理利用等体积法求解三棱锥的体积,准确计算是解答的关键,着重考查了推理与计算能力,属于基础题20.已知点,动点到直线的距离与动点到点的距离之比为.(1)求动点的轨迹的方程;(2)过点作任一直线交曲线于,两点,过点作的垂线交直线于点,求证:平分线段.【答案】(1)(2)见证明【解析】
19、【分析】(1)由动点到直线距离与动点到点的距离之比为,列出方程,即可求解;(2)设的直线方程为,得的直线方程为,分别与直线和椭圆的方程联立方程组,利用根与系数的关系求得,的坐标,将点坐标代入直线的方程,即可得到结论【详解】(1)设,由动点到直线的距离与动点到点的距离之比为,则,化简得.(2)设的直线方程为,则的直线方程为,联立,解得,直线的方程为,联立得,设,则,设的中点为,则,将点坐标代入直线的方程,点在直线上,平分线段.【点睛】本题主要考查了动点的轨迹方程点求解,及直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关
20、系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等21.已知函数.(I)当时,求曲线在处的切线方程;()若当时,求的取值范围.【答案】(1)(2)【解析】试题分析:()先求的定义域,再求,由直线方程的点斜式可求曲线在处的切线方程为()构造新函数,对实数分类讨论,用导数法求解.试题解析:(I)的定义域为.当时,曲线在处的切线方程为(II)当时,等价于设,则,(i)当,时,故在上单调递增,因此;(ii)当时,令得.由和得,故当时,在单调递减,因此.综上,的取值范围是【考点】 导数的几何意义,利用导数判断函数的单调性【
21、名师点睛】求函数的单调区间的方法:(1)确定函数yf(x)的定义域;(2)求导数yf(x);(3)解不等式f(x)0,解集在定义域内的部分为单调递增区间;(4)解不等式f(x)0,解集在定义域内的部分为单调递减区间【此处有视频,请去附件查看】22.在直角坐标系中,圆的方程为()以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程;()直线的参数方程是(为参数),与交于两点,求的斜率【答案】();().【解析】试题分析:()利用,化简即可求解;()先将直线化成极坐标方程,将的极坐标方程代入的极坐标方程得,再利用根与系数的关系和弦长公式进行求解.试题解析:()化圆的一般方程可化为.由,可得
22、圆的极坐标方程.()在()中建立的极坐标系中,直线的极坐标方程为.设,所对应的极径分别为,将的极坐标方程代入的极坐标方程得.于是,.由得,.所以的斜率为或.【此处有视频,请去附件查看】23. 选修4-5:不等式选讲已知函数,M为不等式的解集.()求M;()证明:当a,b时,.【答案】();()详见解析.【解析】试题分析:(I)先去掉绝对值,再分,和三种情况解不等式,即可得;(II)采用平方作差法,再进行因式分解,进而可证当,时,试题解析:(I)当时,由得解得;当时,;当时,由得解得.所以的解集.()由()知,当时,从而,因此【考点】绝对值不等式,不等式证明. 【名师点睛】形如(或)型的不等式主要有两种解法:(1)分段讨论法:利用绝对值号内式子对应的方程的根,将数轴分为,(此处设)三个部分,在每个部分去掉绝对值号并分别列出对应的不等式进行求解,然后取各个不等式解集的并集(2)图象法:作出函数和的图象,结合图象求解