ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:854.50KB ,
资源ID:102126      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-102126-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2011年高考新课标理科数学原创预测题:专题一 集合、常用逻辑用语、不等式、函数与导数.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2011年高考新课标理科数学原创预测题:专题一 集合、常用逻辑用语、不等式、函数与导数.doc

1、专题一:集合、常用逻辑用语、不等式、函数与导数(新课标理)一、选择题1.已知集合,则( ). . . . 2命题“存在为假命题”是命题“”的( )充要条件 必要不充分条件 充分不必要条件 既不充分也不必要条件3.设( ) . . 4.曲线在点(0,1)处的切线方程为( ). . . . 5已知函数且在上的最大值与最小值之和为,则的值为(). . . .6.求曲线与所围成图形的面积,其中正确的是( ) 7设函数在区间内有零点,则实数的取值范围是( )8函数在定义域()内可导,其图象如图所示,记的导函数为,则不等式的解集为( ) 9.已知函数,若,且,则的取值范围是( )10如图,正方形的顶点,顶

2、点位于第一象限,直线将正方形分成两部分,记位于直线左侧阴影部分的面积为,则函数的图象大致是( ) 二、填空题11若函数在R上有两个零点,则实数a的取值范围是_.12.已知,则的最小值是_.13. 设变量,满足约束条件,则的最大值为_.14定义在上的函数是减函数,且函数的图象关于成中心对称,若,满足不等式,则当时,的取值范围是_.三、解答题15.设函数.(I)求函数的单调区间;(II)若当时,不等式恒成立,求实数的取值范围.16已知函数 (I)求函数的单调增区间; (II)若函数的值.17.已知函数,.()求的极值;()若在上恒成立,求的取值范围;()已知,且,求证:.18.已知函数 ()若函数

3、上为单调增函数,求a的取值范围;()设19.已知函数, .()求函数的定义域;()求函数的单调区间;()当0时,若存在x使得成立,求的取值范围.20.已知函数()求在处的切线方程()若的一个极值点到直线的距离为1,求的值;()求方程的根的个数. 答案解析(专题一)1.选.由题意得,所以.2.选.依题意,“存在为假命题”得,解得,所以命题“存在为假命题”是命题“”的充要条件.3.选,由对数函数的图象,可得, ,又因为.4.选.,切线斜率,所以切线方程为,即.5.选.依题意,函数且在上具有相同的单调性,因此,解得(舍去). 6.选.两函数图象的交点坐标是,故积分上限是,下限是,由于在上,故曲线与所

4、围成图形的面积。7.选.在上是减函数,由题设有,解得a. 8.选.依题意,当时,函数是减函数,由图象知,x.9.选.由题意知,所以,令,则 在上为减函数,所以.10.选依题意得11.【解析】考查和的交点情况,由于直线的方向确定,画出图象易知,当直线和相切时,仅有一个公共点,这时切点是,切线方程是,将直线向上平移,这时两曲线必有两个不同的交点.【答案】12.【解析】因为,当且仅当,且,即时,取“=”. 【答案】13.【解析】 约束条件确定的区域如图阴影所示,目标函数在点(3,0)处取得最大值.【答案】914.【解析】由的图象关于成中心对称,知的图象关于成中心对称,故为奇函数,得,从而,化简得,又

5、,故,从而,等号可以取到,而,故【答案】15.【解析】(1),令,得或,的单调增区间为和.令得,的单调减区间为.(2),令,得,又由(1)知,分别是的极大值点和极小值点,当时.16.【解析】(I)由题意, 当.当 (II)由(I)可知,.若上为增函数,(舍去).若上为减函数,(舍去).若上为减函数,综上所述,.17.【解析】(I),令,得. 当为增函数; 当为减函数, 可知有极大值为.()欲使在上恒成立,只需在上恒成立,设,由()知,在处取最大值,所以.(),由上可知在上单调递增,所以,即,同理,两式相加得,所以.18. 【解析】(I)因为上为单调增函数,所以上恒成立.所以a的取值范围是(II

6、)要证,只需证,即证只需证由(I)知上是单调增函数,又,所以19.()当时函数的定义域为; 当时函数的定义域为. (),令时,得即,当时,时,当时,故当 时,函数的递增区间为,递减区间为.当时,所以,故当时,在上单调递增当时,若,;若,故当时,的单调递增区间为;单调递减区间为 ()因为当时,函数的单调递增区间为;单调递减区间为若存在使得成立,只需,即,所以,所以,所以.20.【解析】(), 且.故在点处的切线方程为:.()由得,故仅有一个极小值点,根据题意得:,或. ()令 当时, 当时, 因此,在区间上,单调递减, 在区间上,单调递增. 又为偶函数,当时,的极小值为. 当时, 当时,. 当时, 当时,. 故的根的情况为: 当时,即时,原方程有2个根; 当时,即时,原方程有3个根; 当时,即时,原方程有4个根.w.w.w.k.s.5.u.c.o.m

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3