1、课时跟踪检测(三十)等差数列及其前n项和一抓基础,多练小题做到眼疾手快1若等差数列an的前5项之和S525,且a23,则a7()A12B13C14 D15解析:选B由S525a47,所以732dd2,所以a7a43d73213.2(2015西安八校联考)在等差数列an中,a10,公差d0,若ama1a2a9,则m的值为()A37 B36C20 D19解析:选Aama1a2a99a1d36da37.3(2016陕西质量监测)已知数列an满足a115,且3an13an2.若akak10,则正整数k()A21 B22C23 D24解析:选C3an13an2an1anan是等差数列,则ann.ak1a
2、k0,0,k,k23.4(2015唐山期末)设等差数列an的前n项和为Sn,S36,S412,则S6_.解析:设数列an的公差为d,S36,S412,S66a1d30.答案:305已知等差数列an中,an0,若n2且an1an1a0,S2n138,则n等于_解析:2anan1an1,又an1an1a0,2ana0,即an(2an)0.an0,an2.S2n12(2n1)38,解得n10.答案:10二保高考,全练题型做到高考达标1(2015太原一模)在单调递增的等差数列an中,若a31,a2a4,则a1()A1 B0C. D.解析:选B由题知,a2a42a32,又a2a4,数列an单调递增,a2
3、,a4.公差d.a1a2d0.2(2015江西八校联考)数列an的前n项和Sn2n23n(nN*),若pq5,则apaq()A10 B15C5 D20解析:选D当n2时,anSnSn12n23n2(n1)23(n1)4n1,当n1时,a1S15,符合上式,an4n1,apaq4(pq)20.3(2015东北三省联考)现给出以下几个数列:2,4,6,8,2(n1),2n;1,1,2,3,n;常数列a,a,a,a;在数列an中,已知a2a12,a3a22.其中等差数列的个数为()A1 B2C3 D4解析:选B由42642n2(n1)2,得数列2,4,6,8,2(n1),2n为等差数列;因为1102
4、11,所以数列1,1,2,3,n不是等差数列;常数列a,a,a,a为等差数列;当数列an仅有3项时,数列an是等差数列,当数列an的项数超过3项时,数列an不一定是等差数列故等差数列的个数为2.4设等差数列an的前n项和为Sn,且a10,a3a100,a6a70,则满足Sn0的最大自然数n的值为()A6 B7C12 D13解析:选Ca10,a6a70,a60,a70,等差数列的公差小于零,又a3a10a1a120,a1a132a70,S120,S130,满足Sn0的最大自然数n的值为12.5(2015青岛二模)设数列an的前n项和为Sn,若为常数,则称数列an为“吉祥数列”已知等差数列bn的首
5、项为1,公差不为0,若数列bn为“吉祥数列”,则数列bn的通项公式为()Abnn1 Bbn2n1Cbnn1 Dbn2n1解析:选B设等差数列bn的公差为d(d0),k,因为b11,则nn(n1)dk,即2(n1)d4k2k(2n1)d,整理得(4k1)dn(2k1)(2d)0.因为对任意的正整数n上式均成立,所以(4k1)d0,(2k1)(2d)0,解得d2,k.所以数列bn的通项公式为bn2n1.6在等差数列an中,a1533,a2566,则a45_.解析:a25a1510d663333,a45a2520d6666132.答案:1327(2014江西高考)在等差数列an中,a17,公差为d,
6、前 n项和为Sn ,当且仅当n8 时Sn 取得最大值,则d 的取值范围为_解析:由题意,当且仅当n8时Sn有最大值,可得即解得1d0.(1)求证:当n5时,an成等差数列;(2)求an的前n项和Sn.解:(1)证明:由4Sna2an3,4Sn1a2an13,得4an1aa2an12an,即(an1an)(an1an2)0.当n5时,an0,所以an1an2,所以当n5时,an成等差数列(2)由4a1a2a13,得a13或a11,又a1,a2,a3,a4,a5成等比数列,所以an1an0(n5),q1,而a50,所以a10,从而a13,所以an所以Sn三上台阶,自主选做志在冲刺名校1(2016保
7、定一模)设等差数列an满足a11,an0(nN*),其前n项和为Sn,若数列也为等差数列,则的最大值是()A310 B212C180 D121解析:选D设数列an的公差为d,依题意得2,因为a11,所以2,化简可得d2a12,所以an1(n1)22n1,Snn2n2,所以222121.2(2015山东省实验中学一模)已知数列an满足,an1an4n3(nN*)(1)若数列an是等差数列,求a1的值;(2)当a12时,求数列an的前n项和Sn.解:(1)法一:数列an是等差数列,ana1(n1)d,an1a1nd.由an1an4n3,得(a1nd)a1(n1)d4n3,2dn(2a1d)4n3,即2d4,2a1d3,解得d2,a1.法二:在等差数列an中,由an1an4n3,得an2an14(n1)34n1,2dan2an(an2an1)(an1an)4n1(4n3)4,d2.又a1a22a1d2a124131,a1.(2)当n为奇数时,Sna1a2a3ana1(a2a3)(a4a5)(an1an)2424(n1)3.当n为偶数时,Sna1a2a3an(a1a2)(a3a4)(an1an)19(4n7).