ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:882KB ,
资源ID:1018562      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1018562-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019版数学一轮高中全程复习方略课时作业47立体几何中的向量方法(二) WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2019版数学一轮高中全程复习方略课时作业47立体几何中的向量方法(二) WORD版含解析.doc

1、课时作业47立体几何中的向量方法(二)求空间角和距离授课提示:对应学生用书第248页1(2017江苏卷)如图,在平行六面体ABCDA1B1C1D1中,AA1平面ABCD,且ABAD2,AA1,BAD120.求异面直线A1B与AC1所成角的余弦值解析:在平面ABCD内,过点A作AEAD,交BC于点E.因为AA1平面ABCD,所以AA1AE,AA1AD.如图,以,1为正交基底,建立空间直角坐标系Axyz.因为ABAD2,AA1,BAD120,则A(0,0,0),B(,1,0),D(0,2,0),E(,0,0),A1(0,0,),C1(,1,)(,1,),(,1,),则cos,因此异面直线A1B与A

2、C1所成角的余弦值为.2(2017浙江卷)如图,已知四棱锥PABCD,PAD是以AD为斜边的等腰直角三角形,BCAD,CDAD,PCAD2DC2CB,E为PD的中点(1)证明:CE平面PAB;(2)求直线CE与平面PBC所成角的正弦值解析:(1)证明:如图,设PA中点为F,连接EF,FB.因为E,F分别为PD,PA的中点,所以EFAD且EFAD.又因为BCAD,BCAD,所以EFBC且EFBC,即四边形BCEF为平行四边形,所以CEBF.CE平面PAB,BF平面PAB,因此CE平面PAB.(2)分别取BC,AD的中点M,N.连接PN交EF于点Q,连接MQ.因为E,F,N分别是PD,PA,AD的

3、中点,所以Q为EF中点,在平行四边形BCEF中,MQCE.由PAD为等腰直角三角形得PNAD.由DCAD,N是AD的中点得BNAD,PNBNN.所以AD平面PBN,由BCAD得BC平面PBN,BC平面PBC,那么平面PBC平面PBN.过点Q作PB的垂线,垂足为H,连接MH.MH是MQ在平面PBC上的射影,所以QMH是直线CE与平面PBC所成的角设CD1.在PCD中,由PC2,CD1,PD得CE,在PBN中,由PNBN1,PB得QH,在RtMQH中,QH,MQ,所以sinQMH.所以,直线CE与平面PBC所成角的正弦值是.一题多解(1)证明:设AD的中点为O,连接OB,OP.PAD是以AD为斜边

4、的等腰直角三角形,OPAD.BCADOD,且BCOD,四边形BCDO为平行四边形,又CDAD,OBAD,OPOBO,AD平面OPB.过点O在平面POB内作OB的垂线OM,交PB于M,以O为原点,OB所在直线为x轴,OD所在直线为y轴,OM所在直线为z轴,建立空间直角坐标系Oxyz,如图设CD1,则有A(0,1,0),B(1,0,0),C(1,1,0),D(0,1,0)设P(x,0,z)(z0),由PC2,OP1,得得x,z.即点P,而E为PD的中点,E.设平面PAB的法向量为n(x1,y1,z1),(1,1,0),取y11,得n(1,1,)而,则n0,而CE平面PAB,CE平面PAB.(2)设

5、平面PBC的法向量为m(x2,y2,z2),(0,1,0),取x21,得m(1,0,)设直线CE与平面PBC所成角为.则sin|cosm,|,故直线CE与平面PBC所成角的正弦值为.3(2017新课标全国卷)如图,四面体ABCD中,ABC是正三角形,ACD是直角三角形,ABDCBD,ABBD.(1)证明:平面ACD平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角DAEC的余弦值解析:(1)证明:由题设可得ABDCBD,从而ADCD.又ACD是直角三角形,所以ADC90.取AC的中点O,连接DO,BO,则DOAC,DOAO.又因为ABC是正三

6、角形,故BOAC,所以DOB为二面角DACB的平面角在RtAOB中,BO2AO2AB2,又ABBD,所以BO2DO2BO2AO2AB2BD2,故DOB90.所以平面ACD平面ABC.(2)由题设及(1)知,OA,OB,OD两两垂直,以O为坐标原点,的方向为x轴正方向,|为单位长度,建立如图所示的空间直角坐标系Oxyz,则A(1,0,0),B(0,0),C(1,0,0),D(0,0,1)由题设知,四面体ABCE的体积为四面体ABCD的体积的,从而E到平面ABC的距离为D到平面ABC的距离的,即E为DB的中点,得E,故(1,0,1),(2,0,0),.设n(x,y,z)是平面DAE的法向量,则即可

7、取n.设m是平面AEC的法向量,则同理可取m(0,1,),则cosn,m.所以二面角DAEC的余弦值为.4(2018广东省五校高三第一次考试)如图,菱形ABCD中,ABC60,AC与BD相交于点O,AE平面ABCD,CFAE,ABAE2.(1)求证:BD平面ACFE;(2)当直线FO与平面BED所成的角为45时,求异面直线OF与BE所成的角的余弦值大小解析:(1)证明:四边形ABCD是菱形,BDAC.AE平面ABCD,BD平面ABCD,BDAE.ACAEA,BD平面ACFE.(2)以O为原点,的方向为x,y轴正方向,过O且平行于CF的直线为z轴(向上为正方向),建立空间直角坐标系Oxyz,则B

8、(0,0),D(0,0),E(1,0,2),F(1,0,a)(a0),(1,0,a)设平面EBD的法向量为n(x,y,z),则有,即,令z1,则n(2,0,1),由题意得sin45|cos,n|,解得a3或.由a0,得a3,(1,0,3),(1,2),cos,故异面直线OF与BE所成的角的余弦值为.5(2017新课标全国卷)如图,四棱锥PABCD中,侧面PAD为等边三角形且垂直于底面ABCD,ABBCAD,BADABC90,E是PD的中点(1)证明:直线CE平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45,求二面角MABD的余弦值解析:(1)证明:取PA的中点F,连接EF

9、,BF.因为E是PD的中点,所以EFAD,EFAD.由BADABC90得BCAD,又BCAD,所以EF綊BC,四边形BCEF是平行四边形,CEBF.又BF平面PAB,CE平面PAB,故CE平面PAB.(2)由已知得BAAD,以A为坐标原点,的方向为x轴正方向,|为单位长度,建立如图所示的空间直角坐标系Axyz,则A(0,0,0),B(1,0,0),C(1,1,0),P(0,1,),(1,0,),(1,0,0)设M(x,y,z)(0x1),则(x1,y,z),(x,y1,z)因为BM与底面ABCD所成的角为45,而n(0,0,1)是底面ABCD的法向量,所以|cos,n|sin 45,即(x1)

10、2y2z20.又M在棱PC上,设,则x,y1,z.由解得(舍去),或所以M,从而.设m(x0,y0,z0)是平面ABM的法向量,则即所以可取m(0,2)于是cosm,n.因此二面角MABD的余弦值为.能力挑战6如图所示,已知正三棱柱ABCA1B1C1中,AB2,AA1,点D为AC的中点,点E在线段AA1上(1)当AEEA112时,求证:DEBC1;(2)是否存在点E,使二面角DBEA等于60?若存在,求AE的长;若不存在,请说明理由解析:(1)证明:连接DC1,因为ABCA1B1C1为正三棱柱,所以ABC为正三角形又因为D为AC的中点,所以BDAC.又平面ABC平面ACC1A1,所以BD平面A

11、CC1A1.所以BDDE.因为AEEA112,AB2,AA1,所以AE,AD1.所以在RtADE中,ADE30.在RtDCC1中,C1DC60.所以EDC190,即EDDC1,DC1BDD.所以DE平面BDC1,又因为BC1平面BDC1,所以EDBC1.(2)假设存在点E满足条件,设AEh.取A1C1的中点D1,连接DD1,则DD1平面ABC,所以DD1AD,DD1BD.如图,分别以DA,DB,DD1所在直线为x,y,z轴建立空间直角坐标系Dxyz,则A(1,0,0),B(0,0),E(1,0,h)所以(0,0),(1,0,h),(1,0),(0,0,h)设平面DBE的一个法向量为n1(x1,y1,z1),则即令z11,得n1(h,0,1)同理,设平面ABE的一个法向量为n2(x2,y2,z2),则,即,得n2(,1,0)所以|cosn1,n2|cos 60.解得h,故存在点E满足条件当AE时,二面角DBEA等于60.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3