收藏 分享(赏)

2011年高考数学最后冲刺精编模拟试题5.doc

上传人:高**** 文档编号:101453 上传时间:2024-05-25 格式:DOC 页数:12 大小:421.50KB
下载 相关 举报
2011年高考数学最后冲刺精编模拟试题5.doc_第1页
第1页 / 共12页
2011年高考数学最后冲刺精编模拟试题5.doc_第2页
第2页 / 共12页
2011年高考数学最后冲刺精编模拟试题5.doc_第3页
第3页 / 共12页
2011年高考数学最后冲刺精编模拟试题5.doc_第4页
第4页 / 共12页
2011年高考数学最后冲刺精编模拟试题5.doc_第5页
第5页 / 共12页
2011年高考数学最后冲刺精编模拟试题5.doc_第6页
第6页 / 共12页
2011年高考数学最后冲刺精编模拟试题5.doc_第7页
第7页 / 共12页
2011年高考数学最后冲刺精编模拟试题5.doc_第8页
第8页 / 共12页
2011年高考数学最后冲刺精编模拟试题5.doc_第9页
第9页 / 共12页
2011年高考数学最后冲刺精编模拟试题5.doc_第10页
第10页 / 共12页
2011年高考数学最后冲刺精编模拟试题5.doc_第11页
第11页 / 共12页
2011年高考数学最后冲刺精编模拟试题5.doc_第12页
第12页 / 共12页
亲,该文档总共12页,全部预览完了,如果喜欢就下载吧!
资源描述

1、精编模拟套题(五)本试卷共4页,21小题,满分150分。考试用时120分钟。一、 选择题:本大题共8小题,每小题5分,满分40分在每小题给出的四个选项中,只有一项是符合题目要求的1. 数集与之的关系是( )A;B; C;D2. 下列四个命题中,真命题的个数为( )(1)若两平面有三个公共点,则这两个平面重合;(2)两条直线可以确定一个平面;(3)若;(4)空间中,相交与同一点的三条直线在同一平面内。A.1 B.2 C.3 D.43. 若则向量的关系是( ) A平行 B重合 C垂直 D不确定4. 已知函数(其中)的图象如下面右图所示,则函数的图象是( )A B C D5. 在ABC中,若,则AB

2、C的形状是.( )A.等腰直角三角形B.直角三角形 C.等腰或直角三角形D.等边三角形6. 已知()的展开式中第三项与第五项的系数之比为,则展开式中常数项是(A)1 (B)1 (C)45 (D)45第8题图7. 从2004名学生中选取50名组成参观团,若采用下面的方法选取:先用简单随机抽样从2004人中剔除4人,剩下的2000人再按系统抽样的方法进行,则每人入选的概率A不全相等B均不相等C都相等且为D都相等且为 8. 已知函数f(x)ax3bx2cxd的图象如图23,则( )A.b(,0) B.b(0,1)C.b(1,2) D.b(2,)二、填空题:本大题共7小题,考生作答6小题,每小题5分,

3、满分30分(一)必做题(9 12题)9. 在(x)2006 的二项展开式中,含x的奇次幂的项之和为S,当x时,S等于 10. 右图中有一个信号源和五个接收器。接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号。若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所有六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是 11. 下列四个条件中,是的充要条件条件的是 ,为双曲线,或;有两个不同的零点。12. 在数列在中,,其中为常数,则的值是 .(二)选做题(13 15题,考生只能从中选做两题)13. (坐标系与参数方程

4、选做题)在极坐标系中,过圆=6cos的圆心,且垂直于极轴的直线的极坐标方程为 14. (不等式选讲选做题)|2x-3|+|3x+2|的最小值是 15. (几何证明选讲选做题) 已知是半圆的直径,点在半圆上,于点,且,设,则 三、解答题:本大题共6小题,满分80分解答须写出文字说明、证明过程和演算步骤.16. (本题满分12分)已知函数,设是函数图象的一条对称轴,求的值(2)已知函数成立,求a的取值范围。17. (本题满分12分)某学校举办一场以“为希望工程献爱心”为主题的图书义卖活动,同学甲随机地从10本书中买两本,假设每本书被甲同学买走的概率相同,已知这10本书中有3本单价定为10元,4本单

5、价定为15元,3本单价定为20元,记甲同学买这两本书所付金额为(元)。求:()随机变量的分布列;()随机变量的期望和方差。18. (本题满分14分)MDCBAP 如图,在四棱锥中,底面是边长为的菱形,平面,与平面所成角的大小为,为的中点 (1)求四棱锥的体积; (2)求异面直线与所成角的大小(结果用反三角函数表示)19. (本题满分14分)已知二次函数直线l2与函数的图象以及直线l1、l2与函数的图象所围成的封闭图形如图中阴影所示,设这两个阴影区域的面积之和为(I)求函数的解析式;(II)定义函数的三条切线,求实数m的取值范围。20. (本题满分14分)已知椭圆C的中心在原点,焦点在轴上,以两

6、个焦点和短轴的两个端点为顶点的四边形是一个面积为8的正方形(记为Q)()求椭圆C的方程; ()设点P是椭圆C的左准线与轴的交点,过点P的直线与椭圆C相交于M,N两点,当线段MN的中点落在正方形Q内(包括边界)时,求直线的斜率的取值范围。21. (本题满分14分)等比数列的前n项和为, 已知对任意的 ,点,均在函数且均为常数)的图像上.(1)求r的值; (11)当b=2时,记 求数列的前项和2010三轮复习精编模拟套题(五)参考答案及详细解析18 CACACDCA 9. -23008 10. 11. 12. 1 13. cos3 14. 4 15. 一、选择题1.答案:C【解析】从题意看,数集与

7、之间必然有关系,如果A成立,则D就成立,这不可能;同样,B也不能成立;而如果D成立,则A、B中必有一个成立,这也不可能,所以只能是C2答案:A【解析】根据命题本身涉及的知识去判断真假,判断一个命题为真,一般要进行严格的逻辑推理,判断一个命题为假,只要举出一个反例即可.(1)是假命题,两平面也可能相交;(2)是假命题,若两直线是异面直线,不可能确定一个平面;(4)是假命题,两相交直线确定一个平面,第三条直线过该交点,可与该平面相交。3.答案:C【解析】分别表示平行四边形的两条对角线,它们相等,即说明四边形ABCD为矩形。故选C4.答案:A【解析】由的图象知,所以函数的图象是A5.答案:C【解析】

8、由已知及正弦定理得sin2A=sin2B2A2B或2A2B,即AB或AB,故ABC为等腰三角形或直角三角形.选C6.答案:D【解析】第三项的系数为,第五项的系数为,由第三项与第五项的系数之比为可得n10,则,令405r0,解得r8,故所求的常数项为45,选D7.答案:C8. 答案:A【解析】解法一:分别将x0,x1,x2代入f(x)ax3bx2cxd中,求得d0,ab,cb,f(x)当x(,0)时,f(x)0,又0,b0x(0,1)时,f(x)0,又0,b0x(1,2)时,f(x)0,又0,b0x(2)时,f(x)0,又0,b0故b(0).解法二:由此题的函数图象可以联想到解高次不等式时所用的

9、图象法a0,x1,x2,x3为图象与x轴的交点x12,x21,x30,ax3bx2cx+d=a(xx1)(xx2)(xx3)a(x2)(x1)(x0)f(x)=ax33ax22ax,又a0,b3a,b0选A解法三:函数f(x)的图象过原点,即f(0)=0得d=0又因f(x)的图象过点(1,0),得f(1)=a+b+c=0由图象得f(1)0,即a+bc0得2b0,b0二、 填空题9答案:-23008【解析】设(x)2006a0x2006a1x2005a2005xa2006则当x时,有a0()2006a1()2005a2005()a20060 (1)当x时,有a0()2006a1()2005a20

10、05()a200623009 (2)(1)(2)有a1()2005a2005()23009223008,10.答案:【解析】将六个接线点随机地平均分成三组,共有种结果,五个接收器能同时接收到信号必须全部在同一个串联线路中,有种结果,这五个接收器能同时接收到信号的概率是11.答案: p不是q的充分条件,也不是必要条件; p是q的充要条件; p是q的充分条件,不是必要条件,p是q的是必要不充分条件p是q的充要条件12答案:1【解析】由知,是公差为4的等差数列,故,解得,从而13.答案:cos3【解析】由题意可知圆的标准方程为,圆心是(30)所求直线标准方程x3,则坐标方程为cos314.答案:4【

11、解析】|2x-3|+|3x+2|=|2x-3|+|2x+|+|x+|(2x-3)-(2x+)|+|x+|4+0=4。当x=-时取等号,|2x-3|+|3x+2|的最小值为415.答案:【解析】即,三、 解答题16. (1)由题设知因为是函数图象的一条对称轴,所以,即()所以当为偶数时,当为奇数时, (2) “二”)17. 的所有可能值为20,25,30,35,40。 5分随机变化的概率分布为2025303540 7分()20+25+30+35+4030 9分 12分MDCBAPO18. 解:(1)连结,因为平面,所以为与平面所成的角(2分)由已知,而,所以(3分)底面积,(4分)所以,四棱锥的

12、体积(6分)(2)连结,交于点,连结,因为、分别为、的中点,所以,所以(或其补角)为异面直线与所成的角(8分)在中,(10分)(以下由余弦定理,或说明是直角三角形求得)或或(13分)19. (I)由, 2分(II)依据定义,7分10分所以,当当 11分因此,关于x0的方程 12分故实数m的取值范围是(4,4)。 1420. ()依题意,设椭圆C的方程为焦距为,由题设条件知, 所以 故椭圆C的方程为 -3分 ()椭圆C的左准线方程为所以点P的坐标,显然直线的斜率存在,所以直线的方程为。 如图,设点M,N的坐标分别为线段MN的中点为G, 由得 由解得 因为是方程的两根,所以,于是 =, 因为,所以点G不可能在轴的右边,又直线,方程分别为所以点在正方形内(包括边界)的充要条件为即 亦即 解得,此时也成立故直线斜率的取值范围是21. 因为对任意的,点,均在函数且均为常数)的图像上.所以得,当时, 当时,又因为为等比数列, 所以, 公比为, 所以(2)当b=2时,, 则相减,得 所以

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3