收藏 分享(赏)

2020版《新一线》高考数学(文)总复习课后限时集训35 合情推理与演绎推理 WORD版含解析.doc

上传人:高**** 文档编号:1006079 上传时间:2024-06-04 格式:DOC 页数:8 大小:113KB
下载 相关 举报
2020版《新一线》高考数学(文)总复习课后限时集训35 合情推理与演绎推理 WORD版含解析.doc_第1页
第1页 / 共8页
2020版《新一线》高考数学(文)总复习课后限时集训35 合情推理与演绎推理 WORD版含解析.doc_第2页
第2页 / 共8页
2020版《新一线》高考数学(文)总复习课后限时集训35 合情推理与演绎推理 WORD版含解析.doc_第3页
第3页 / 共8页
2020版《新一线》高考数学(文)总复习课后限时集训35 合情推理与演绎推理 WORD版含解析.doc_第4页
第4页 / 共8页
2020版《新一线》高考数学(文)总复习课后限时集训35 合情推理与演绎推理 WORD版含解析.doc_第5页
第5页 / 共8页
2020版《新一线》高考数学(文)总复习课后限时集训35 合情推理与演绎推理 WORD版含解析.doc_第6页
第6页 / 共8页
2020版《新一线》高考数学(文)总复习课后限时集训35 合情推理与演绎推理 WORD版含解析.doc_第7页
第7页 / 共8页
2020版《新一线》高考数学(文)总复习课后限时集训35 合情推理与演绎推理 WORD版含解析.doc_第8页
第8页 / 共8页
亲,该文档总共8页,全部预览完了,如果喜欢就下载吧!
资源描述

1、课后限时集训(三十五)(建议用时:60分钟)A组基础达标一、选择题1下面四个推导过程符合演绎推理三段论形式且推理正确的是()A大前提:无限不循环小数是无理数;小前提:是无理数;结论:是无限不循环小数B大前提:无限不循环小数是无理数;小前提:是无限不循环小数;结论:是无理数C大前提:是无限不循环小数;小前提:无限不循环小数是无理数;结论:是无理数D大前提:是无限不循环小数;小前提:是无理数;结论:无限不循环小数是无理数BA中小前提不正确,C,D都不是由一般性结论到特殊性结论的推理,所以A,C,D都不正确,只有B的推导过程符合演绎推理三段论形式且推理正确2观察下列事实:|x|y|1的不同整数解(x

2、,y)的个数为4,|x|y|2的不同整数解(x,y)的个数为8,|x|y|3的不同整数解(x,y)的个数为12,则|x|y|20的不同整数解(x,y)的个数为()A76B80C86D92B观察已知事实可知,|x|y|20的不同整数解(x,y)的个数为20480,故选B.3(2019湖南师大附中模拟)已知anlogn1(n2)(nN*),观察下列算式:a1a2log23log342;a1a2a3a4a5a6log23log34log783;若a1a2am2 016(mN*),则m的值为()A22 0162 B22 016C22 0162 D22 0164C因为a1a2amlog23log34lo

3、gm1(m2)2 016,所以有log2(m2)2 016,m22 0162,选C.4(2019新余模拟)我国古代数学名著九章算术的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周盒体而无所失矣”它体现了一种无限与有限的转化过程比如在表达式1中“”即代表无限次重复,但原式却是个定值,它可以通过方程1x求得x.类似上述过程,则()A3 B.C6 D2A由题意结合所给的例子类比推理可得,x(x0),整理得(x1)(x3)0,则x3,即3.故选A.5老师带甲、乙、丙、丁四名学生去参加自主招生考试,考试结束后老师向四名学生了解考试情况,四名学生回答如下:甲说:“我们四人都没考好”;

4、乙说:“我们四人中有人考的好”;丙说:“乙和丁至少有一人没考好”;丁说:“我没考好”结果,四名学生中有两人说对了,则四名学生中说对的两人是()A甲、丙 B乙、丁 C丙、丁 D乙、丙D甲、乙两人说话矛盾,必有一对一错,如果丁正确,则丙也是对的,所以丁错误,可得丙正确,此时乙正确,故选D.二、填空题6已知点A(x1,x),B(x2,x)是函数yx2的图象上任意不同的两点,依据图象可知,线段AB总是位于A,B两点之间函数图象的上方,因此有结论2成立运用类比思想方法可知,若点A(x1,sin x1),B(x2,sin x2)是函数ysin x(x(0,)的图象上任意不同的两点,则类似地有结论_成立si

5、n 函数ysin x(x(0,)的图象上任意不同的两点A,B,线段AB总是位于A,B两点之间函数图象的下方,类比可知应有sin .7(2017北京高考)某学习小组由学生和教师组成,人员构成同时满足以下三个条件:男学生人数多于女学生人数;女学生人数多于教师人数;教师人数的两倍多于男学生人数(1)若教师人数为4,则女学生人数的最大值为_;(2)该小组人数的最小值为_612(1)若教师人数为4,则男学生人数小于8,最大值为7,女学生人数最大时应比男学生人数少1人,所以女学生人数的最大值为716.(2)设男学生人数为x(xN*),要求该小组人数的最小值,则女学生人数为x1,教师人数为x2.又2(x2)

6、x,解得x4,即x5,该小组人数的最小值为54312.8某种平面分形图如图所示,一级分形图是由一点出发的三条线段,长度相等,两两夹角为120;二级分形图是在一级分形图的每条线段末端出发再生成两条长度为原来的线段,且这两条线段与原线段两两夹角为120,依此规律得到n级分形图则n级分形图中共有_条线段32n3由题图知,一级分形图有3323条线段,二级分形图有93223条线段,三级分形图有213233条线段,按此规律,n级分形图中的线段条数an32n3(nN*)三、解答题9设f(x),先分别求f(0)f(1),f(1)f(2),f(2)f(3),然后归纳猜想一般性结论,并给出证明证明f(0)f(1)

7、,同理可得:f(1)f(2),f(2)f(3),并注意到在这三个特殊式子中,自变量之和均等于1.归纳猜想得:当x1x21时,均有f(x1)f(x2).证明:设x1x21,f(x1)f(x2).10某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:sin213cos217sin13cos 17;sin215cos215sin 15cos 15;sin218cos212sin 18cos 12;sin2(18)cos248sin(18)cos 48;sin2(25)cos255sin(25)cos 55.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该

8、同学的发现推广为三角恒等式,并证明你的结论解(1)选择式,计算如下:sin215cos215sin 15cos 151sin 301.(2)法一:三角恒等式为sin2cos2(30)sin cos(30).证明如下:sin2cos2(30)sin cos(30)sin2(cos 30cos sin 30sin )2sin (cos 30cos sin 30sin )sin2cos2sin cos sin2sin cos sin2sin2cos2.法二:三角恒等式为sin2 cos2(30)sin cos(30).证明如下:sin2cos2(30)sin cos(30)sin (cos 30 c

9、os sin 30sin )cos 2(cos 60cos 2sin 60sin 2)sin cos sin2cos 2cos 2sin 2sin 2(1cos 2)1cos 2cos 2.B组能力提升1平面内凸四边形有2条对角线,凸五边形有5条对角线,以此类推,凸13边形对角线的条数为()A42B65C143D169B可以通过列表归纳分析得到凸多边形45678对角线条数223234234523456凸13边形有2341165条对角线故选B.2(2019南昌模拟)平面内直角三角形两直角边长分别为a,b,则斜边长为,直角顶点到斜边的距离为,空间中三棱锥的三条侧棱两两垂直,三个侧面的面积分别为S1

10、,S2,S3,类比推理可得底面积为,则三棱锥顶点到底面的距离为()A. B.C. D.C设三棱锥两两垂直的三条侧棱长度为a,b,c,三棱锥顶点到底面的距离为d,由题意可得:cd,据此可得:d,且ab2S1,ac2S2,bc2S3,故:a2b2c28S1S2S3,abc2,则d,故选C.3甲、乙、丙三人各从图书馆借来一本书,他们约定读完后互相交换三人都读完了这三本书之后,甲说:“我最后读的书与丙读的第二本书相同”乙说:“我读的第二本书与甲读的第一本书相同”根据以上说法,推断乙读的最后一本书是_读的第一本书丙因为共有三本书,而乙读的第一本书与第二本书已经明确,只有丙读的第一本书乙还没有读,所以乙读

11、的最后一本书是丙读的第一本书4对于三次函数f(x)ax3bx2cxd(a0),给出定义:设f(x)是函数yf(x)的导数,f(x)是f(x)的导数,若方程f(x)0有实数解x0,则称点(x0,f(x0)为函数yf(x)的“拐点”某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心若f(x)x3x23x,请你根据这一发现,(1)求函数f(x)的对称中心;(2)计算fffff.解(1)f(x)x2x3,f(x)2x1,由f(x)0,即2x10,解得x.f31.由题中给出的结论,可知函数f(x)x3x23x的对称中心为.(2)由(1)知函数f(x)x3x23x的对称中心为,所以ff2,即f(x)f(1x)2.故ff2,ff2,ff2,ff2.所以fffff22 0182 018.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3