ImageVerifierCode 换一换
格式:PPT , 页数:40 ,大小:3.33MB ,
资源ID:1002874      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1002874-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2015-2016学年高中数学人教B版选修1-1课件 第2章 2.ppt)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

2015-2016学年高中数学人教B版选修1-1课件 第2章 2.ppt

1、成才之路 数学路漫漫其修远兮 吾将上下而求索人教B版 选修1-11-2 圆锥曲线与方程第二章2.3抛物线第2课时 抛物线的几何性质第二章课堂典例探究2课 时 作 业3课前自主预习1课前自主预习1.抛物线的定义是什么?答案:平面内到一个定点F和一条直线l(Fl)的距离相等的点的轨迹叫做抛物线定点F叫做抛物线的焦点,定直线l叫做抛物线的准线2抛物线的四种标准方程是什么?答案:y22px,y22px,x22py,x22py(p0)一 抛物线的几何性质1抛物线的范围(以标准方程y22px(p0)为例,下同)(1)范围:x0,yR;(2)抛物线在y轴右侧;(3)开口与x轴正向相同;(4)当x的值增大时,

2、|y|也增大,这说明抛物线向右上方和右下方无限延伸注意:抛物线标准方程中的p影响抛物线的开口大小,p越大,开口越大;当x的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸,但它与双曲线的一支是有区别的,双曲线有渐近线,抛物线无渐近线2抛物线的对称性(1)抛物线的对称轴的方程为:y0;(2)我们把抛物线的对称轴称为抛物线的轴注意:把抛物线标准方程中的y换成y,方程并未发生改变,所以抛物线的图象关于x轴成轴对称;把抛物线标准方程中的x换成x,方程发生了改变,所以抛物线的图象不关于y轴成轴对称3抛物线的顶点抛物线和它的轴的交点叫做抛物线的顶点,抛物线的顶点为O(0,0)4抛物线的离心率抛

3、物线上的点到焦点和到准线距离的比,叫抛物线的离心率,用e表示由抛物线定义可知,e1.注意:抛物线的离心率是确定的,为1.这与椭圆、双曲线不同注意三种圆锥曲线的离心率范围椭圆的离心率:0e1抛物线的离心率:e15四种标准方程的性质对比二 直线与抛物线的位置关系1位置关系的判定联立直线和抛物线方程得ax2bxc0.当a0时,0直线与抛物线相交,有两个不同的交点;0直线与抛物线相切,只有一个公共点;0)上,求这个正三角形的边长解题提示因为正三角形与抛物线都是轴对称图形,所以可以证明正三角形的另外两个顶点关于x轴对称,进而求出边长抛物线中的最值问题解题提示利用抛物线方程设出P点坐标,然后结合抛物线方程

4、利用二次函数求最值设P是抛物线y24x上的一个动点(1)求点P到点A(1,1)的距离与点P到直线x1的距离之和的最小值;(2)若B(3,2),求|PB|PF|的最小值解析(1)如图(1),抛物线的焦点为F(1,0),准线方程为x1.点P到直线x1的距离等于P到点F(1,0)的距离,将点P到A(1,1)的距离与到直线的距离之和转化为在曲线上求一点P,使点P到点A(1,1)的距离与点P到F(1,0)的距离之和最小正解C 设抛物线上任一点P的坐标为(x,y),则|PA|2d2x2(ya)22y(ya)2y2(2a2)ya2y(a1)2(2a1)y0,),根据题意知,(1)当a10,即a1,y0时,da2.这时dmin|a|.(2)当a10,即a1时,ya1时d2取到最小值,不符合题意综上可知a1.课 时 作 业(点此链接)

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1