收藏 分享(赏)

《名校推荐》吉林省东北师范大学附属中学2015-2016学年高二数学理人教A版必修四教案:1.1-01任意角(1) .doc

上传人:高**** 文档编号:100238 上传时间:2024-05-25 格式:DOC 页数:4 大小:243KB
下载 相关 举报
《名校推荐》吉林省东北师范大学附属中学2015-2016学年高二数学理人教A版必修四教案:1.1-01任意角(1) .doc_第1页
第1页 / 共4页
《名校推荐》吉林省东北师范大学附属中学2015-2016学年高二数学理人教A版必修四教案:1.1-01任意角(1) .doc_第2页
第2页 / 共4页
《名校推荐》吉林省东北师范大学附属中学2015-2016学年高二数学理人教A版必修四教案:1.1-01任意角(1) .doc_第3页
第3页 / 共4页
《名校推荐》吉林省东北师范大学附属中学2015-2016学年高二数学理人教A版必修四教案:1.1-01任意角(1) .doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、高考资源网() 您身边的高考专家任意角(1)课时:01课型:新授课教学目标:掌握用“旋转”定义角的概念,理解任意角的概念,学会在平面内建立适当的坐标系来讨论角;并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。教学重点:理解“正角”“负角”“象限角”“终边相同的角”的含义教学难点:“旋转”定义角课标要求:了解任意角的概念教学过程:一、引入 同学们在初中时,曾初步接触过三角函数,那时的运用仅限于计算一些特殊的三角函数值、研究一些三角形中简单的边角关系等。三角函数也是高中数学的一个重要内容,在今后的学习中大家会发现三角学有着极其丰富的内容,它能够简单地解决许多数学问题,在中学数学中有着非

2、常广泛的应用。二、新课1回忆:初中是任何定义角的?(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”师:初中时,我们已学习了0360角的概念,它是如何定义的呢?B O A 图1生:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。师:如图1,一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到终止位置OB,就形成角。旋转开始时的射线OA叫做角的始边,OB叫终边,射线的端点O叫做叫的顶点。 师:在体操比赛中我们经常听到这样的术语:“转体720o” (即转体2周),“转体1080o”(即转体3周);再如时钟快了5分钟,

3、现要校正,需将分针怎样旋转?如果慢了5分钟,又该如何校正?生:逆时针旋转300;顺时针旋转300.师:(1)用扳手拧螺母;(2)跳水运动员身体旋转说明旋转第二周、第三周,则形成了更大范围内的角,这些角显然超出了我们已有的认识范围。本节课将在已掌握 角的范围基础上,重新给出角的定义,并研究这些角的分类及记法2.角的概念的推广:(1)定义:一条射线OA由原来的位置OA,绕着它的端点O按一定方向旋转到另一位置OB,就形成了角。其中射线OA叫角的始边,射线OB叫角的终边,O叫角的顶点。3正角、负角、零角概念师:为了区别起见,我们把按逆时针方向旋转所形成的角叫正角,如图2中的角为正角,它等于300与75

4、00;我们把按逆时针方向旋转所形成的角叫正角,那么同学们猜猜看,负角怎么规定呢?零角呢?生:按顺时针方向旋转所形成的角叫负角,如果一条射线没有作任何旋转,我们称它形成了一个零角。师:如图3,以OA为始边的角=-1500,=-6600。特别地,当一条射线没有作任何旋转时,我们也认为这是形成了一个角,并把这个角称为零角。师:好,角的概念经过这样的推广之后,就应该包括正角、负角、零角。这里还有一点要说明:为了简单起见,在不引起混淆的前提下,“角”或“”可简记为. 4.象限角师:在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念。同学们已经经过预习,请一位同学回答什么叫:象限角

5、? 生:角的顶点与原点重合,角的始边与x轴的非负半轴重合。那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角。师:很好,从刚才这位同学的回答可以知道,她已经基本理解了“象限角”的概念了。下面请大家将书上象限角的定义划好,同时思考这么三个问题:1.定义中说:角的始边与x轴的非负半轴重合,如果改为与x轴的正半轴重合行不行,为什么?2.定义中有个小括号,内容是:除端点外,请问课本为什么要加这四个字?3.是不是任意角都可以归结为是象限角,为什么?处理:学生思考片刻后回答,教师适时予以纠正。答:1.不行,始边包括端点(原点);2端点在原点上;3不是,一些特殊角终边可能落在坐标轴上;如果角的

6、终边落在坐标轴上,就认为这个角不属于任一象限。师:同学们一定要学会看数学书,特别是一些重要的概念、定理、性质要斟字酌句,每个字都要弄清楚,这样的预习才是有效果的。师生讨论:好,按照象限角定义,图中的300,3900,-3300角,都是第一象限角;3000,-600角,都是第四象限角;5850角是第三象限角。师:很好,不过老师还有几事不明,要请教大家:(1)锐角是第一象限角吗?第一象限角是锐角吗?为什么?生:锐角是第一象限角,第一象限角不一定是锐角;师:(2)锐角就是小于900的角吗?生:小于900的角可能是零角或负角,故它不一定是锐角;师:(3)锐角就是00900的角吗? 生:锐角:|0090

7、0;00900的角:|00900.学生练习(口答)已知角的顶点与坐标系原点重合,始边落在x轴的非负半轴上,作出下列各角,并指出它们是哪个象限的角?(1)4200;(2)-750;(3)8550;(4)-5100.答:(1)第一象限角;(2)第四象限角;(3)第二象限角;(4)第三象限角.5.终边相同的角的表示法师:观察下列角你有什么发现? 390 -330 30 1470 -1770生:终边重合.师:请同学们思考为什么?能否再举三个与300角同终边的角?生:图中发现3900,-3300与300相差3600的整数倍,例如,3900=3600+300,-3300=-3600+300;与300角同终

8、边的角还有7500,-6900等。师:好!这位同学发现了两个同终边角的特征,即:终边相同的角相差3600的整数倍。例如:7500=23600+300;-6900=-23600+300。那么除了这些角之外,与300角终边相同的角还有:33600+300-33600+30043600+300-43600+300,由此,我们可以用S=|=k3600+300,kZ来表示所有与300角终边相同的角的集合。师:那好,对于任意一个角,与它终边相同的角的集合应如何表示?生:S=|=+k3600,kZ,即任一与角终边相同的角,都可以表示成角与整数个周角的和。6.例题讲评例1:设A|为锐角,B|为小于90的角,C

9、|为第一象限的角,D|为小于90的正角,则下列等式中成立的是 ()AAB BBCCAC DAD例2:若45k180 (kZ),则的终边在()A第一或第三象限 B第二或第三象限C第二或第四象限 D第三或第四象限例3:已知角x的终边落在图示阴影部分区域,写出角x组成的集合解(1)x|k360135xk360135,kZ(2)x|k36030xk36060,kZx|k360210xk360240,kZx|2k18030x2k18060或(2k1)18030x(2k1)18060,kZx|k18030xk18060,kZ例4:在 间,找出与下列各角终边相同的角,并判定它们是第几象限角(1) ;(2)

10、;(3) 解:(1) 与 角终边相同的角是 角,它是第三象限的角;(2) 与 终边相同的角是 ,它是第四象限的角;(3) 所以与 角终边相同的角是 ,它是第二象限角练习: (1)一角为 ,其终边按逆时针方向旋转三周后的角度数为_(2)集合M=k,kZ中,各角的终边都在(C )Ax轴正半轴上, By轴正半轴上,Cx轴或 轴上, D x轴正半轴或 轴正半轴上(3)设 , C|= k180o+45o ,kZ , 则相等的角集合为_BD,CE_三.本课小结本节课我们学习了正角、负角和零角的概念,象限角的概念,要注意如果角的终边在坐标轴上,就认为这个角不属于任何象限,本节课的重点是学习终边相同的角的表示法。判断一个角 是第几象限角,只要把 改写成 , ,那么 在第几象限, 就是第几象限角,若角 与角 适合关系: , ,则 、 终边相同;若角 与 适合关系: , ,则 、 终边互为反向延长线判断一个角所有象限或不同角之间的终边关系,可首先把它们化为: , 这种模式( ),然后只要考查 的相关问题即可另外,数形结合思想、运动变化观点都是学习本课内容的重要思想方法四.作业:高考资源网版权所有,侵权必究!

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3