1、预习课本P8491,思考并完成以下问题(1)函数关系与相关关系的区别与联系是什么? (2)如何判断两个变量之间是否具备相关关系? (3)什么是正相关、负相关?与散点图有什么关系? 1相关关系如果两个变量中一个变量的取值一定时,另一个变量的取值带有一定的随机性,那么这两个变量之间的关系叫做相关关系2散点图将各数据在平面直角坐标系中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫做散点图,利用散点图,可以判断两个变量是否相关,相关时是正相关还是负相关3正相关和负相关(1)正相关:散点图中的点散布在从左下角到右上角的区域(2)负相关:散点图中的点散布在从左上角到右下角的区域点睛对正相关
2、和负相关的理解(1)正相关随自变量的变大(或变小),因变量也随之变大(或变小),这种带有随机性的相关关系,我们称为正相关例如,人年龄由小变大时,体内脂肪含量也由少变多(2)负相关随自变量的变大(或变小),因变量却随之变小(或变大),这种带有随机性的相关关系,我们称为负相关例如,汽车越重,每消耗1 L汽油所行驶的平均路程就越短4回归直线方程(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线(2)回归方程:回归直线的方程,简称回归方程(3)回归方程的推导过程:假设已经得到两个具有线性相关关系的变量的一组数据(x1,y1),(x
3、2,y2),(xn,yn)设所求回归方程为x,其中,是待定参数由最小二乘法得其中:是回归方程的斜率,是截距1下列命题正确的是()任何两个变量都具有相关关系;圆的周长与该圆的半径具有相关关系;某商品的需求量与该商品的价格是一种非确定性关系;根据散点图求得的回归直线方程可能是没有意义的;两个变量间的相关关系可以通过回归直线,把非确定性问题转化为确定性问题进行研究ABC D解析:选C显然不对,是函数关系,正确2对变量x,y有观测数据(xi,yi)(i1,2,10),得散点图图1;对变量u,v有观测数据(ui,vi)(i1,2,10),得散点图图2.由这两个散点图可以判断()A变量x与y正相关,u与v
4、正相关B变量x与y正相关,u与v负相关C变量x与y负相关,u与v正相关D变量x与y负相关,u与v负相关解析:选C由这两个散点图可以判断,变量x与y负相关,u与v正相关3若施肥量x(kg)与水稻产量y(kg)的线性回归方程为5x250,当施肥量为80 kg时,预计水稻产量约为_kg.解析:把x80代入回归方程可得其预测值580250650(kg)答案:6504对具有线性相关关系的变量x和y,测得一组数据如下表所示.x24568y3040605070若已求得它们的回归直线的斜率为6.5,这条回归直线的方程为_解析:由题意可知5,50.即样本中心为(5,50)设回归直线方程为6.5x,回归直线过样本
5、中心(,),506.55,即17.5,回归直线方程为6.5x17.5答案:6.5x17.5相关关系的判断典例(1)下列关系中,属于相关关系的是_(填序号)正方形的边长与面积之间的关系;农作物的产量与施肥量之间的关系;出租车费与行驶的里程;降雪量与交通事故的发生率之间的关系(2)某个男孩的年龄与身高的统计数据如下表所示.年龄x(岁)123456身高y(cm)788798108115120画出散点图;判断y与x是否具有线性相关关系解析(1)在中,正方形的边长与面积之间的关系是函数关系;在中,农作物的产量与施肥量之间不具有严格的函数关系,但具有相关关系;为确定的函数关系;在中,降雪量与交通事故的发生
6、率之间具有相关关系答案:(2)解:散点图如图所示由图知,所有数据点接近一条直线排列,因此,认为y与x具有线性相关关系两个变量是否相关的两种判断方法(1)根据实际经验:借助积累的经验进行分析判断(2)利用散点图:通过散点图,观察它们的分布是否存在一定的规律,直观地进行判断活学活用某中学的兴趣小组在某座山测得海拔高度、气压和沸点的六组数据绘制成散点图如图所示,则下列说法错误的是()A沸点与海拔高度呈正相关B沸点与气压呈正相关C沸点与海拔高度呈负相关D沸点与海拔高度、沸点与气压的相关性都很强解析:选A由左图知气压随海拔高度的增加而减小,由右图知沸点随气压的升高而升高,所以沸点与气压呈正相关,沸点与海
7、拔高度呈负相关,由于两个散点图中的点都成线性分布,所以沸点与海拔高度、沸点与气压的相关性都很强,故B、C、D正确,A错误.求回归方程典例(1)已知变量x与y正相关,且由观测数据算得样本平均数3,3.5,则由该观测数据算得的线性回归方程可能是()A.0.4x2.3B.2x2.4C.2x9.5 D.0.3x4.4(2)一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点的零件的多少随机器的运转的速度的变化而变化,下表为抽样试验的结果:转速x(转/秒)1614128每小时生产有缺点的零件数y(件)11985画出散点图;如果y对x有线性相关关系,请画出一条直线近似地表示这种线性关系
8、;在实际生产中,若它们的近似方程为yx,允许每小时生产的产品中有缺点的零件最多为10件,那么机器的运转速度应控制在什么范围内?解析(1)依题意知,相应的回归直线的斜率应为正,排除C、D.且直线必过点(3,3.5),代入A、B得A正确答案:A(2)解:散点图如图所示:近似直线如图所示:由y10得x10,解得x14.9,所以机器的运转速度应控制在14转/秒内求回归直线方程的步骤(1)收集样本数据,设为(xi,yi)(i1,2,n)(数据一般由题目给出)(2)作出散点图,确定x,y具有线性相关关系(3)把数据制成表格xi,yi,x,xiyi.(4)计算,iyi.(5)代入公式计算,公式为(6)写出回
9、归直线方程x.活学活用已知变量x,y有如下对应数据:x1234y1345(1)作出散点图;(2)用最小二乘法求关于x,y的回归直线方程解:(1)散点图如图所示(2),iyi16122039.1491630,0,所以x为所求的回归直线方程.利用线性回归方程对总体进行估计典例由某种设备的使用年限xi(年)与所支出的维修费yi(万元)的数据资料算得如下结果,90,iyi112,i20,i25.(1)求所支出的维修费y对使用年限x的线性回归方程x;(2)判断变量x与y之间是正相关还是负相关;当使用年限为8年时,试估计支出的维修费是多少解(1)i20,i25,i4,i5,1.2,51.240.2.线性回
10、归方程为1.2x0.2.(2)由(1)知1.20,变量x与y之间是正相关由(1)知,当x8时,1.280.29.8,即使用年限为8年时,支出维修费约是9.8万元只有当两个变量之间存在线性相关关系时,才能用回归直线方程对总体进行估计和预测否则,如果两个变量之间不存在线性相关关系,即使由样本数据求出回归直线方程,用其估计和预测结果也是不可信的活学活用随着我国经济的发展,居民的储蓄存款逐年增长设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份20132014201520162017时间代号t12345储蓄存款y(千亿元)567810(1)求y关于t的回归方程t;(2)用所求回归方程预测该地区20
11、18年(t6)的人民币储蓄存款解:(1)列表计算如下:itiyittiyi12345123455678101491625512213250153655120这里n5,i3,i7.2.n25553210,iyin120537.212,从而1.2,7.21.233.6,故所求回归方程为1.2t3.6.(2)将t6代入回归方程可预测该地区2018年的人民币储蓄存款为1.263.610.8(千亿元)层级一学业水平达标1下列变量具有相关关系的是()A人的体重与视力B圆心角的大小与所对的圆弧长C收入水平与购买能力D人的年龄与体重解析:选CB为确定性关系;A,D不具有相关关系,故选C.2已知变量x,y之间具
12、有线性相关关系,其散点图如图所示,则其回归方程可能为A.1.5x2B.1.5x2C.1.5x2D.1.5x2解析:选B设回归方程为x,由散点图可知变量x,y之间负相关,回归直线在y轴上的截距为正数,所以0,因此方程可能为1.5x2.3为了考察两个变量x和y之间的线性相关性,甲、乙两位同学各自独立地做10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1和l2,已知两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,那么下列说法正确的是()Al1和l2必定平行Bl1与l2必定重合Cl1和l2一定有公共点(s,t)Dl1与l2相交,但交点不一定是(s,t
13、)解析:选C注意到回归直线必经过样本中心点4对有线性相关关系的两个变量建立的回归直线方程x中,回归系数()A不能小于0B不能大于0C不能等于0 D只能小于0解析:选C当0时,r0,这时不具有线性相关关系,但能大于0,也能小于0.52018年元旦前夕,某市统计局统计了该市2017年10户家庭的年收入和年饮食支出的统计资料如下表:年收入x(万元)24466677810年饮食支出y(万元)0.91.41.62.02.11.91.82.12.22.3(1)如果已知y与x是线性相关的,求回归方程;(2)若某家庭年收入为9万元,预测其年饮食支出(参考数据:iyi117.7,406)解:依题意可计算得:6,
14、1.83,236, 10.98,又iyi117.7,406,0.17,0.81,0.17x0.81.所求的回归方程为0.17x0.81.(2)当x9时,0.1790.812.34(万元)可估计年收入为9万元的家庭每年饮食支出约为2.34万元层级二应试能力达标1一个口袋中有大小不等的红、黄、蓝三种颜色的小球若干个(大于5个),从中取5次,那么取出红球的次数和口袋中红球的数量是()A确定性关系 B相关关系C函数关系 D无任何关系解析:选B每次从袋中取球取出的球是不是红球,除了和红球的个数有关外,还与球的大小等有关系,所以取出红球的次数和口袋中红球的数量是一种相关关系2农民工月工资y(元)依劳动生产
15、率x(千元)变化的回归直线方程为5080x,下列判断正确的是()A劳动生产率为1 000元时,工资为130元B劳动生产率提高1 000元时,工资水平提高80元C劳动生产率提高1 000元时,工资水平提高130元D当月工资为210元时,劳动生产率为2 000元解析:选B由回归直线方程5080x知,x每增加1,y增加80,但要注意x的单位是千元,y的单位是元3(2017山东高考)为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为x,已知i225,i1 600,4.该班某学生的脚长为2
16、4,据此估计其身高为()A160 B163C166 D170解析:选C由题意可知4x,又22.5,160,因此16022.54,解得70,所以4x70.当x24时,42470166.4已知x与y之间的几组数据如下表:x123456y021334假设根据上表数据所得线性回归直线方程为x,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为ybxa,则以下结论正确的是()A.b,a B.b,aC.a D.b,a解析:选C由(1,0),(2,2)求b,a.b2,a0212.求,时,iyi04312152458,3.5,14916253691,3.5,a.5正常情况下,年龄在18岁到3
17、8岁的人,体重y(kg)对身高x(cm)的回归方程为0.72x58.2,张红同学(20岁)身高为178 cm,她的体重应该在_ kg左右解析:用回归方程对身高为178 cm的人的体重进行预测,当x178时,0.7217858.269.96(kg)答案:69.966某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x(元)456789销量y(件)928280807868由表中数据,求得线性回归方程为4x,则_.解析:,80,由回归方程过样本中心点(,)得804.即804106.答案:1067对某台机器购置后的运行年限x(x1,2,3,)与当年利润y的统
18、计分析知x,y具备线性相关关系,回归方程为10.471.3x,估计该台机器最为划算的使用年限为_年解析:当年利润小于或等于零时应该报废该机器,当y0时,令10.471.3x0,解得x8,故估计该台机器最为划算的使用年限为8年答案:88一项关于16艘轮船的研究中,船的吨位区间为192,3 246(单位:吨),船员的人数532人,船员人数y关于吨位x的回归方程为9.50.006 2x,(1)若两艘船的吨位相差1 000,求船员平均相差的人数;(2)估计吨位最大的船和最小的船的船员人数解:(1)设两艘船的吨位分别为x1,x2,则129.50.006 2x1(9.50.006 2x2)0.006 21
19、 0006,即船员平均相差6人(2)当x192时,9.50.006 219211,当x3 246时,9.50.006 23 24630.即估计吨位最大和最小的船的船员数分别为30人和11人9某个体服装店经营某种服装在某周内所获纯利y(元)与该周每天销售这种服装的件数x(件)之间有一组数据如下表:每天销售服装件数x(件)3456789该周内所获纯利y(元)66697381899091(1)求,;(2)若纯利y与每天销售这种服装的件数x之间是线性相关的,求回归直线方程;(3)若该店每周至少要获纯利200元,请你预测该店每天至少要销售这种服装多少件?(提示:280,45 309,iyi3 487)解:(1)6,79.86.(2)4.75,79.864.75651.36,纯利与每天销售件数x之间的回归直线方程为51.364.75x.(3)当200时,2004.75x51.36,所以x31.29.因此若该店每周至少要获纯利200元,则该店每天至少要销售这种服装32件