收藏 分享(赏)

《课堂新坐标》2016-2017学年高中数学人教B版选修2-3学案:2.1.3 超几何分布 WORD版含解析.doc

上传人:高**** 文档编号:999637 上传时间:2024-06-03 格式:DOC 页数:12 大小:397KB
下载 相关 举报
《课堂新坐标》2016-2017学年高中数学人教B版选修2-3学案:2.1.3 超几何分布 WORD版含解析.doc_第1页
第1页 / 共12页
《课堂新坐标》2016-2017学年高中数学人教B版选修2-3学案:2.1.3 超几何分布 WORD版含解析.doc_第2页
第2页 / 共12页
《课堂新坐标》2016-2017学年高中数学人教B版选修2-3学案:2.1.3 超几何分布 WORD版含解析.doc_第3页
第3页 / 共12页
《课堂新坐标》2016-2017学年高中数学人教B版选修2-3学案:2.1.3 超几何分布 WORD版含解析.doc_第4页
第4页 / 共12页
《课堂新坐标》2016-2017学年高中数学人教B版选修2-3学案:2.1.3 超几何分布 WORD版含解析.doc_第5页
第5页 / 共12页
《课堂新坐标》2016-2017学年高中数学人教B版选修2-3学案:2.1.3 超几何分布 WORD版含解析.doc_第6页
第6页 / 共12页
《课堂新坐标》2016-2017学年高中数学人教B版选修2-3学案:2.1.3 超几何分布 WORD版含解析.doc_第7页
第7页 / 共12页
《课堂新坐标》2016-2017学年高中数学人教B版选修2-3学案:2.1.3 超几何分布 WORD版含解析.doc_第8页
第8页 / 共12页
《课堂新坐标》2016-2017学年高中数学人教B版选修2-3学案:2.1.3 超几何分布 WORD版含解析.doc_第9页
第9页 / 共12页
《课堂新坐标》2016-2017学年高中数学人教B版选修2-3学案:2.1.3 超几何分布 WORD版含解析.doc_第10页
第10页 / 共12页
《课堂新坐标》2016-2017学年高中数学人教B版选修2-3学案:2.1.3 超几何分布 WORD版含解析.doc_第11页
第11页 / 共12页
《课堂新坐标》2016-2017学年高中数学人教B版选修2-3学案:2.1.3 超几何分布 WORD版含解析.doc_第12页
第12页 / 共12页
亲,该文档总共12页,全部预览完了,如果喜欢就下载吧!
资源描述

1、高考资源网() 您身边的高考专家2.1.3超几何分布1.理解超几何分布及其推导过程.(重点、难点)2.能用超几何分布解决一些简单的实际问题.(难点)基础初探教材整理超几何分布阅读教材P44P45例1以上部分,完成下列问题.设有总数为N件的两类物品,其中一类有M件,从所有物品中任取n件(nN),这n件中所含这类物品件数X是一个离散型随机变量,它取值为m时的概率为P(Xm)(0ml,l为n和M中较小的一个),则称离散型随机变量X的这种形式的概率分布为超几何分布,也称X服从参数为N,M,n的超几何分布.1.判断(正确的打“”,错误的打“”)(1)超几何分布的模型是不放回抽样.()(2)超几何分布的总

2、体里可以有两类或三类特点.()(3)超几何分布中的参数是N,M,n.()(4)超几何分布的总体往往由差异明显的两部分组成.()2.设10件产品中有3件次品,现从中抽取5件,则表示()A.5件产品中有3件次品的概率B.5件产品中有2件次品的概率C.5件产品中有2件正品的概率D.5件产品中至少有2件次品的概率【解析】根据超几何分布的定义可知C表示从3件次品中任选2件,C表示从7件正品中任选3件,故选B.【答案】B质疑手记预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑: 小组合作型超几何分布概率公式的应用从放有10个红球与15个白球的暗箱中

3、,随意摸出5个球,规定取到一个白球得1分,一个红球得2分,求某人摸出5个球,恰好得7分的概率.【精彩点拨】摸出5个球得7分,即摸出2个红球,3个白球,然后利用超几何分布的概率公式求解即可.【自主解答】设摸出的红球个数为X,则X服从超几何分布,其中N25,M10,n5,由于摸出5个球,得7分,仅有两个红球的可能,那么恰好得7分的概率为P(X2)0.385,即恰好得7分的概率约为0.385.1.解答此类问题的关键是先分析随机变量是否满足超几何分布.若满足,则直接利用公式解决;若不满足,则应借助相应概率公式求解.2.注意公式中M,N,n的含义.再练一题1.在8个大小相同的球中,有2个黑球,6个白球,

4、现从中取3个,求取出的球中白球个数X的分布列.【解】X的可能取值是1,2,3.P(X1);P(X2);P(X3).故X的分布列为X123P超几何分布的分布列袋中有4个红球,3个黑球,这些球除颜色外完全相同,从袋中随机抽取球,设取到一个红球得2分,取到一个黑球得1分,从袋中任取4个球.(1)求得分X的分布列;(2)求得分大于6分的概率.【精彩点拨】【自主解答】(1)从袋中任取4个球的情况为:1红3黑,2红2黑,3红1黑,4红,共四种情况,得分分别为5分,6分,7分,8分,故X的可能取值为5,6,7,8.P(X5),P(X6),P(X7),P(X8).故所求分布列为X5678P(2)根据随机变量的

5、分布列可以得到大于6分的概率为P(X6)P(X7)P(X8).求超几何分布的分布列时,关键是明确随机变量确实服从超几何分布及随机变量的取值,分清其公式中M,N,n的值,然后代入公式即可求出相应取值的概率,最后写出分布列.再练一题2.在本例中,设X1为取得红球的分数之和,X2为取得黑球的分数之和,X|X1X2|,求X的分布列.【解】从袋中任取4个球的情况为:1红3黑,X12,X23,X1;2红2黑,X14,X22,X2;3红1黑,X16,X21,X5;4红,X18,X20,X8.P(X1),P(X2),P(X5),P(X8).故所求的分布列为:X1258P探究共研型超几何分布的综合应用探究从含有

6、5件次品的100件产品中任取3件.这100件产品可分几类?取到的次品数X的取值有哪些?求次品数X2的概率.【提示】产品分两类:次品和非次品;X取值为:0,1,2,3;P(X2).在一次购物抽奖活动中,假设10张奖券中有一等奖奖券1张,可获价值50元的奖品,有二等奖奖券3张,每张可获价值10元的奖品,其余6张没有奖品.(1)顾客甲从10张奖券中任意抽取1张,求中奖次数X的分布列;(2)顾客乙从10张奖券中任意抽取2张,求顾客乙中奖的概率;设顾客乙获得的奖品总价值为Y元,求Y的分布列.【精彩点拨】(1)从10张奖券中抽取1张,其结果有中奖和不中奖两种,故X(0,1).(2)从10张奖券中任意抽取2

7、张,其中含有中奖的奖券的张数X(X1,2)服从超几何分布.【自主解答】(1)抽奖一次,只有中奖和不中奖两种情况,故X的取值只有0和1两种情况.P(X1),则P(X0)1P(X1)1.因此X的分布列为X01P(2)顾客乙中奖可分为互斥的两类事件:所抽取的2张奖券中有1张中奖或2张都中奖.故所求概率P.Y的所有可能取值为0,10,20,50,60,且P(Y0),P(Y10),P(Y20),P(Y50),P(Y60).因此随机变量Y的分布列为Y010205060P解决超几何分布问题的两个关键点(1)超几何分布是概率分布的一种形式,一定要注意公式中字母的范围及其意义,解决问题时可以直接利用公式求解,但

8、不能机械地记忆.(2)超几何分布中,只要知道M,N,n,就可以利用公式求出X取不同k的概率P(Xk),从而求出X的分布列.再练一题3.现有10张奖券,其中8张1元,2张5元,从中同时任取3张,求所得金额的分布列.【解】设所得金额为X,X的可能取值为3,7,11.P(X3),P(X7),P(X11).故X的分布列为X3711P构建体系 1.今有电子元件50个,其中一级品45个,二级品5个,从中任取3个,出现二级品的概率为()A.B.C.1D.【解析】出现二级品的情况较多,可以考虑不出现二级品概率为,故答案为1.【答案】C2.一批产品共10件,次品率为20%,从中任取2件,则恰好取到1件次品的概率

9、为() 【导学号:62980038】A.B.C.D.【解析】由题意知10件产品中有2件次品,故所求概率为P(X1).【答案】B3.一个盒子里装有大小相同的红球,白球共30个,其中白球4个.从中任取两个,则概率为的事件是()A.没有白球B.至少有一个白球C.至少有一个红球D.至多有一个白球【解析】表示任取的两个球中只有一个白球和两个都是白球的概率,即至少有一个白球的概率.【答案】B4.某10人组成兴趣小组,其中有5名团员,从这10人中任选4人参加某种活动,用X表示4人中的团员人数,则P(X3)_.【解析】P(X3).【答案】5.在一次英语口语考试中,有备选的10道试题,已知某考生能答对其中的8道

10、试题,规定每次考试都从备选题中任选3道题进行测试,至少答对2道题才算合格,求该考生答对试题数X的分布列,并求该考生合格的概率.【解】X可以取1,2,3.P(X1),P(X2),P(X3).所以X的分布列为:Xk123P(Xk)该考生合格的概率为P(X2)P(X2)P(X3).学业分层测评(建议用时:45分钟)学业达标一、选择题1.一个袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,还有4个同样大小的白球,编号为7,8,9,10.现从中任取4个球,有如下几种变量:X表示取出的最大号码;X表示取出的最小号码;取出一个黑球记2分,取出一个白球记1分,X表示取出的4个球的总得分;X表示取出的黑

11、球个数.这四种变量中服从超几何分布的是()A.B.C.D.【解析】由超几何分布的概念知符合,故选B.【答案】B2.某校从学生会中的10名女生干部与5名男生干部中随机选取6名学生干部组成“文明校园督察队”,则组成4女2男的“文明校园督察队”的概率为()A.B.C.D.【解析】组成4女2男的“文明校园督察队”的概率为.【答案】C3.一个盒子里装有相同大小的10个黑球、12个红球、4个白球,从中任取2个,其中白球的个数记为X,则下列概率等于的是()A.P(0X2)B.P(X1)C.P(X1)D.P(X2)【解析】结合题意,当X1时,P(X1),当X0时,P(X0),故P(X1)【答案】B4.设袋中有

12、80个球,其中40个红球,40个黑球,这些球除颜色外完全相同,从中任取两球,则所取的两球同色的概率为() 【导学号:62980039】A.B.C.D.【解析】由题意知所求概率为P.【答案】A5.在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X表示这10个村庄中交通不方便的村庄数,下列概率等于的是()A.P(X2)B.P(X2)C.P(X4)D.P(X4)【解析】15个村庄中,7个村庄交通不方便,8个村庄交通方便,CC表示选出的10个村庄中恰有4个交通不方便,6个交通方便的村庄,故P(X4).【答案】C二、填空题6.从3台甲型彩电和2台乙型彩电中任取2台,若设X表示所取的2台彩电

13、中甲型彩电的台数,则P(X1)_.【解析】X1表示的结果是抽取的2台彩电有甲型和乙型彩电各一台,故所求概率P(X1).【答案】7.某导游团由外语导游10人,其中6人会说日语,现要选出4人去完成一项任务,则有2人会说日语的概率为_.【解析】有两人会说日语的概率为.【答案】8.在30瓶饮料中,有3瓶已过了保质期.从这30瓶饮料中任取2瓶,则至少取到1瓶已过了保质期饮料的概率为_.(结果用最简分数表示)【解析】从这30瓶饮料中任取2瓶,设至少取到1瓶已过了保质期饮料为事件A,则P(A).【答案】三、解答题9.(2016大庆高二模拟)某校组织一次冬令营活动,有8名同学参加,其中有5名男同学,3名女同学

14、,为了活动的需要,要从这8名同学中随机抽取3名同学去执行一项特殊任务,记其中有X名男同学.(1)求X的分布列;(2)求去执行任务的同学中有男有女的概率.【解】(1)X的可能取值为0,1,2,3.根据公式P(Xk),k0,1,2,m,其中mminM,n算出其相应的概率.即X的分布列为X0123P(2)去执行任务的同学中有男有女的概率为PP(X1)P(X2).10.袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X表示取出的3个小球上的最大数字.求:(1)取出的3个小球上的数字互不相同的概率;(2)随机变量X的概率

15、分布;(3)计算介于20分到40分之间的概率.【解】(1)“一次取出的3个小球上的数字互不相同”的事件记为A,则P(A).(2)由题意,X所有可能的取值为2,3,4,5.P(X2);P(X3);P(X4);P(X5).所以随机变量X的概率分布为X2345P(3)一次取球得分介于20分到40分之间的事件记为C,P(C)P(X3)P(X4).能力提升1.从一批含有13件正品,2件次品的产品中,不放回地任取3件,则取出的产品中无次品的概率为()A.B.C.D.【解析】设随机变量X表示取出次品的件数,则P(X0).【答案】A2.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么等于()

16、A.恰有1只是坏的概率B.恰有2只是好的概率C.4只全是好的概率D.至多有2只是坏的概率【解析】恰好2只是好的概率为P.【答案】B3.设某10件产品中含有a件次品,从中任取7件产品,其中含有的次品数为X,若X的可能取值中的最小值为2,则a_. 【导学号:62980040】【解析】取出的7件产品中,要使所含的次品数最小,只需将10a件正品都取出,然后再取2件次品即可,故(10a)27,解得a5.【答案】54.高三(1)班的联欢会上设计了一项游戏:在一个口袋中装有10个红球,20个白球,这些球除颜色外完全相同,现一次从中摸出5个球.(1)若摸到4个红球,1个白球的就中一等奖,求中一等奖的概率;(2)若至少摸到3个红球就中奖,求中奖的概率.【解】(1)若以30个球为一批产品,其中红球为不合格产品,随机抽取5个球,X表示取到的红球数,则X服从超几何分布(N30,M10,n5),由公式得,P(X4)0.029 5,所以获一等奖的概率约为0.029 5.(2)根据题意,设随机变量X表示“摸出红球的个数”,则X服从超几何分布(N30,M10,n5).X的可能取值为0,1,2,3,4,5,根据公式可得至少摸到3个红球的概率为:P(X3)P(X3)P(X4)P(X5)0.191 2,故中奖的概率约为0.191 2.高考资源网版权所有,侵权必究!

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3