1、【新教材】5.6函数教学设计(人教A版)本节课是在学习了任意角的三角函数,正、余弦函数的图象和性质后,进一步研究函数yAsin(x+)的简图的画法,由此揭示这类函数的图象与正弦曲线的关系,以及A、的物理意义,并通过图象的变化过程,进一步理解正、余弦函数的性质,它是研究函数图象变换的一个延伸,也是研究函数性质的一个直观反映课程目标1. 分别通过对三角函数图像的各种变换的复习和动态演示进一步让学生了解三角函数图像各种变换的实质和内在规律; 2. 通过对函数y = Asin(wx+)(A0,w0)图象的探讨,让学生进一步掌握三角函数图像各种变换的内在联系.数学学科素养1.逻辑推理: 通过分析A、,研
2、究图像变换注意事项; 2.直观想象:图像的变换. 重点:通过五点作图法正确找出函数ysin x到ysin(x+)的图象变换规律。难点:对周期变换、相位变换先后顺序调整后,将影响图象平移量的理解教学方法:以学生为主体,小组为单位,采用诱思探究式教学,精讲多练。 教学工具:多媒体。一、 情景导入在现实生活中,我们常常会遇到形如yAsin(x)的函数解析式(其中A,都是常数)下面我们讨论函数yAsin(x),xR的简图的画法.要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本231-236页,思考并完成以下问题1、A, 对y=Asin(x+)图象有什么影
3、响?2 、函数y=Asin(x+)的图象与ysinx的图象有什么关系呢?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。三、新知探究1对ysin(x),xR的图象的影响2(0)对ysin(x)的图象的影响3A(A0)对yAsin(x)的图象的影响4函数yAsin(x),A0,0中参数的物理意义四、典例分析、举一反三题型一 例 1 画出函数ysin(x),xR,ysin(x),xR的简图【答案】见解析.【解析】列表x-x+02sin(x+)01010描点画图:xx02sin(x)01010通过比较,发现:(1)函数ysin(x),xR的图象可看作把正弦曲线上所有的点向左平行移
4、动个单位长度而得到(2)函数ysin(x),xR的图象可看作把正弦曲线上所有点向右平行移动个单位长度而得到.解题技巧:(对函数图象的影响)一般地,函数ysin(x),xR(其中0)的图象,可以看作把正弦曲线上所有点向左(当0时)或向右(当0时平行移动个单位长度而得到(用平移法注意讲清方向:“加左”“减右”)跟踪训练一2.函数y = sin2x图像向右平移512个单位所得图像的函数表达式为_ 【答案】 .【解析】题型二 例2 画出函数y=sin2x,xR;y=sinx,xR的图象(简图)【答案】见解析.【解析】函数ysin2x,xR的周期T我们先画在0,上的简图,在0, p上作图,列表:2x0p
5、2px0py=sin2x010-10作图:函数ysinx,xR的周期T4我们画0,4上的简图,列表:0p2px0p2p3p4psin010-10(1)函数ysin2x,xR的图象,可看作把ysinx,xR上所有点的横坐标缩短到原来的倍(纵坐标不变)而得到的(2)函数ysin,xR的图象,可看作把ysinx,xR上所有点的横坐标伸长到原来的2倍(纵坐标不变)而得到解题技巧:(对函数图象的影响)与y=sinx的图象作比较 ,函数y=sinx, xR (0且1)的图象,可看作把正弦曲线上所有点的横坐标缩短(1)或伸长(00且A1)的图象可以看作把正数曲线上的所有点的纵坐标伸长(A1)或缩短(0A1)
6、到原来的A倍得到的2它的值域-A, A 最大值是A, 最小值是-A跟踪训练三1函数y3sin(2x),xR由y=sinx怎样变换得到. 【答案】见解析.【解析】法一:(先伸缩法)把ysin x的图象上所有点的纵坐标伸长到原来的2倍,得到y2sin x的图象;将所得图象上所有点的横坐标缩短到原来的倍,得y2sin 2x的图象;将所得图象沿x轴向左平移个单位,得 y2sin(2x+)的图象.法二:(先平移法)将ysin x的图象沿x轴向左平移个单位,得ysin(x+)的图象;将所得图象上所有点的横坐标缩短到原来的倍,得ysin(2x+)的图象;把所得图象上所有点的纵坐标伸长到原来2倍,得到y2sin(2x+)的图象.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计5.6函数1.平移变换步骤 例1 例2 例3 七、作业课本240页习题5.6.本节课通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认知,关注每名学生的个体差异和不同的学习需求,爱护学生的好奇心,求知欲、创设和谐、融洽、欢快的人为氛围,让学生自主地学,在学习中展现个性、表现个性、培养个性、塑造个性.