1、课时规范练A组基础对点练1集合A2,3,B1,2,3,从A,B中各任意取一个数,则这两数之和等于4的概率是()A.B.C. D.解析:从A、B中各取一个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6种情况,其中和为4的有(2,2),(3,1),共2种情况,所以所求概率P,选C.答案:C2容量为20的样本数据,分组后的频数如下表:分组10,20)20,30)30,40)40,50)50,60)60,70)频数234542则样本数据落在区间10,40)的频率为()A0.35 B0.45C0.55 D0.65解析:数据落在10,40)的频率为0.45,故选B.答案:
2、B3从1,2,3,4,5这5个数中任取两个数,其中:恰有一个是偶数和恰有一个是奇数;至少有一个是奇数和两个都是奇数;至少有一个是奇数和两个都是偶数;至少有一个是奇数和至少有一个是偶数,上述事件中,是对立事件的是()ABC D解析:从1,2,3,4,5这5个数中任取两个数,有三种情况:一奇一偶,两个奇数,两个偶数其中至少有一个是奇数包含一奇一偶,两个奇数这两种情况,它与两个都是偶数是对立事件,而中的事件可能同时发生,不是对立事件,故选C.答案:C4在第3、6、16路公共汽车的一个停靠站(假定这个车站只能停靠一辆公共汽车),有一位乘客需在5分钟之内乘上公共汽车赶到厂里,他可乘3路或6路公共汽车到厂
3、里,已知3路车和6路车在5分钟之内到此车站的概率分别为0.20和0.60,则该乘客在5分钟内能乘上所需要的车的概率为()A0.20 B0.60C0.80 D0.12解析:“能乘上所需要的车”记为事件A,则3路或6路车有一辆路过即事件发生,故P(A)0.200.600.80.答案:C5若A,B为互斥事件,P(A)0.4,P(AB)0.7,则P(B)_.解析:A,B为互斥事件,P(AB)P(A)P(B),P(B)P(AB)P(A)0.70.40.3.答案:0.36某产品分甲、乙、丙三级,其中乙、丙两级均属次品若生产中出现乙级品的概率为0.03,丙级品的概率为0.01,则对成品抽查一件抽得正品的概率
4、为_解析:记“生产中出现甲级品、乙级品、丙级品”分别为事件A,B,C.则A,B,C彼此互斥,由题意可得P(B)0.03,P(C)0.01,所以P(A)1P(BC)1P(B)P(C)10.030.010.96.答案:0.967在一次满分为160分的数学考试中,某班40名学生的考试成绩分布如下:成绩(分)80分以下80,100)100,120)120,140)140,160人数8812102在该班随机抽取一名学生,则该生在这次考试中成绩在120分及以上的概率为_解析:由成绩分布表知120分及以上的人数为12,所以所求概率为0.3.答案:0.38某班选派5人,参加学校举行的数学竞赛,获奖的人数及其概
5、率如下:获奖人数012345概率0.10.16xy0.2z(1)若获奖人数不超过2人的概率为0.56,求x的值;(2)若获奖人数最多4人的概率为0.96,最少3人的概率为0.44,求y、z的值解析:记事件“在竞赛中,有k人获奖”为Ak(kN,k5),则事件Ak彼此互斥(1)获奖人数不超过2人的概率为0.56.P(A0)P(A1)P(A2)0.10.16x0.56.解得x0.3.(2)由获奖人数最多4人的概率为0.96,得P(A5)10.960.04,即z0.04.由获奖人数最少3人的概率为0.44,得P(A3)P(A4)P(A5)0.44,即y0.20.040.44.解得y0.2.9某校在高三
6、抽取了500名学生,记录了他们选修A、B、C三门课的情况,如下表:科目学生人数ABC120是否是60否否是70是是否50是是是150否是是50是否否(1)试估计该校高三学生在A、B、C三门选修课中同时选修两门课的概率;(2)若某高三学生已选修A门课,则该学生同时选修B、C中哪门课的可能性大?解析:(1)由频率估计概率得所求概率P0.68.(2)若某学生已选修A门课,则该学生同时选修B门课的概率为P(B),选修C门课的概率为P(C),因为,所以该学生同时选修C门课的可能性大B组能力提升练1(2018济宁模拟)有一个容量为66的样本,数据的分组及各组的频数如下:11.5,15.5)215.5,19
7、.5)419.5,23.5)923.5,27.5)1827.5,31.5)1131.5,35.5)1235.5,39.5)739.5,43.5)3根据样本的频率分布估计,数据落在27.5,43.5)的概率约是()A. B.C. D.解析:27.5,43.5)的频数为11127333,概率.答案:C2(2018淄博模拟)下列各组事件中,不是互斥事件的是()A一个射手进行一次射击,命中环数大于8与命中环数小于6B统计一个班的数学成绩,平均分不低于90分与平均分不高于90分C播种100粒菜籽,发芽90粒与发芽80粒D检验某种产品,合格率高于70%与合格率低于70%解析:平均分不低于90分,含有90分
8、;平均分不高于90分,也含有90分,两者不互斥答案:B3现有一枚质地均匀且表面分别标有1、2、3、4、5、6的正方体骰子,将这枚骰子先后抛掷两次,这两次出现的点数之和大于点数之积的概率为()A. B.C. D.解析:将这枚骰子先后抛掷两次的基本事件总数为6636(个),这两次出现的点数之和大于点数之积包含的基本事件有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(3,1),(4,1),(5,1),(6,1),共11个,这两次出现的点数之和大于点数之积的概率为P.故选D.答案:D4抛掷一枚均匀的正方体骰子(各面分别标有数字1、2、3、4、5、6),事件A表示
9、“朝上一面的数是奇数”,事件B表示“朝上一面的数不超过2”,则P(AB)_.解析:将事件AB分为:事件C“朝上一面的数为1、2”与事件D“朝上一面的数为3、5”则C、D互斥,则P(C),P(D),P(AB)P(CD)P(C)P(D).答案:5若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)2a,P(B)4a5,则实数a的取值范围是_解析:由题意知a.答案:(,6假设甲乙两种品牌的同类产品在某地区市场上销售量相等,为了解他们的使用寿命,现从这两种品牌的产品中分别随机抽取100个进行测试,结果统计如下:(1)估计甲品牌产品寿命小于200小时的概率;(2)这两种品牌产品中,某个产品已使用
10、了200小时,试估计该产品是甲品牌的概率解析:(1)甲品牌产品寿命小于200小时的频率为,用频率估计概率,所以甲品牌产品寿命小于200小时的概率为.(2)根据抽样结果,寿命大于200小时的产品共有7570145(个),其中甲品牌产品是75个,所以在样本中,寿命大于200小时的产品是甲品牌的频率是,用频率估计概率,所以已使用了200小时的该产品是甲品牌的概率为.7某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下: 赔付金额(元)01 0002 0003 0004 000车辆数(辆)500130100150120(1)若每辆车的投保金额均为2 800元,估计赔
11、付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率解析:(1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得P(A)0.15,P(B)0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是3 000元和4 000元,所以其概率为P(A)P(B)0.150.120.27.(2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.11 000100辆,而赔付金额为4 000元的车辆中,车主为新司机的有0.212024辆,所以样本车辆中新司机车主获赔金额为4 000元的频率为0.24,由频率估计概率得P(C)0.24.