ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:166KB ,
资源ID:997015      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-997015-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020版《导与练》高考数学(文)总复习练习:第十三章 第11节 导数在研究函数中的应用第四课时 导数与函数零点 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2020版《导与练》高考数学(文)总复习练习:第十三章 第11节 导数在研究函数中的应用第四课时 导数与函数零点 WORD版含解析.doc

1、第四课时导数与函数零点【选题明细表】知识点、方法题号利用导数研究函数零点个数2,5根据函数零点求参数3,4函数零点的综合应用1,6,7基础巩固(时间:30分钟)1.(2018河北邢台第二次月考)已知f(x)=ex-ax2.命题p:a1,y=f(x)有三个零点;命题q:aR,f(x)0恒成立.则下列命题为真命题的是(B)(A)pq (B)(p)(q)(C)(p)q (D)p(q)解析:对于命题p:当a=1时,f(x)=ex-x2,在同一坐标系中作出y=ex,y=x2的图象(图略),由图可知y=ex与y=x2的图象有1个交点,所以f(x)=ex-x2有1个零点,故命题p为假命题,因为f(0)=1,

2、所以命题q显然为假命题.故(p)(q)为真.2.(2018贵阳联考)已知函数f(x)的定义域为-1,4,部分对应值如表:x-10234f(x)12020f(x)的导函数y=f(x)的图象如图所示.当1a2时,函数y=f(x)-a的零点的个数为(D)(A)1(B)2(C)3(D)4解析:根据导函数图象,知2是函数的极小值点,函数y=f(x)的大致图象如图所示.由于f(0)=f(3)=2,1a2,所以y=f(x)-a的零点个数为4.3.若函数f(x)=+1(a0)没有零点,则实数a的取值范围为.解析:f(x)=(a0).当x2时,f(x)2时,f(x)0,所以当x=2时,f(x)有极小值f(2)=

3、+1,若使函数f(x)没有零点,当且仅当f(2)=+10,解之得a-e2,因此-e2a0,得x2.所以函数f(x)的单调增区间是(-,-1),(2,+).(2)由(1)知f(x)极大值=f(-1)=-+2-2=-,f(x)极小值=f(2)=-2-4-2=-,由数形结合,可知要使函数g(x)=f(x)-2m+3有三个零点,则-2m-3-,解得-m.所以m的取值范围为(-,).能力提升(时间:15分钟)5.已知函数f(x)=ex-1,g(x)=+x,其中e是自然对数的底数,e=2.718 28.(1)证明:函数h(x)=f(x)-g(x)在区间(1,2)上有零点;(2)求方程f(x)=g(x)的根

4、的个数,并说明理由.(1)证明:由题意可得h(x)=f(x)-g(x)=ex-1-x.所以h(1)=e-30,所以h(1)h(2)0,因此(x)在(0,+)上单调递增,易知(x)在(0,+)内只有一个零点,则h(x)在0,+)上有且只有两个零点,所以方程f(x)=g(x)的根的个数为2.6.已知函数f(x)=ex+ax-a(aR且a0).(1)若f(0)=2,求实数a的值,并求此时f(x)在-2,1上的最小值;(2)若函数f(x)不存在零点,求实数a的取值范围.解:(1)由f(0)=1-a=2,得a=-1.易知f(x)在-2,0上单调递减,在0,1上单调递增,所以当x=0时,f(x)在-2,1

5、上取得最小值2.(2)f(x)=ex+a,由于ex0.当a0时,f(x)0,f(x)是增函数,当x1时,f(x)=ex+a(x-1)0.当x0时,取x=-,则f(-)1+a(-1)=-a0.所以函数f(x)存在零点,不满足题意.当a0时,f(x)=ex+a,令f(x)=0,得x=ln(-a),在(-,ln(-a)上,f(x)0,f(x)单调递增,所以当x=ln(-a)时,f(x)取得最小值.函数f(x)不存在零点,等价于f(ln(-a)=eln(-a)+aln(-a)-a=-2a+aln(-a)0,解得-e2a0.综上所述,所求实数a的取值范围是(-e2,0).7.已知函数f(x)=ax+ln

6、 x,其中a为常数.(1)当a=-1时,求f(x)的单调递增区间;(2)当0-0,当a=-1时,f(x)=-x+ln x(x0),f(x)=(x0);当0x0;当x1时,f(x)0),令f(x)=0,解得x=-;由f(x)0,解得0x-;由f(x)0,解得-xe.从而f(x)的单调递增区间为(0,-),递减区间为(-,e),所以f(x)max=f(-)=-1+ln(-)=-3,解得a=-e2.(3)由(1)知当a=-1时,f(x)max=f(1)=-1,所以|f(x)|1.令g(x)=+,则g(x)=.当0x0;当xe时,g(x)0.从而g(x)在(0,e)上单调递增,在(e,+)上单调递减.所以g(x)max=g(e)=+g(x),即|f(x)|+,所以,方程|f(x)|=+没有实数根.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3