1、板块命题点专练(十四)概率 (研近年高考真题找知识联系,找命题规律,找自身差距)1(2014湖北高考)随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1 ,点数之和大于5的概率记为p2 ,点数之和为偶数的概率记为p3 ,则()Ap1p2p3 Bp2p1p3Cp1p3p2 Dp3p1p22(2014陕西高考)从正方形4个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为()A. B.C. D.3(2014江西高考)掷两颗均匀的骰子,则点数之和为5的概率等于()A. B.C. D.4(2014新课标全国卷)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的
2、运动服中选择1种,则他们选择相同颜色运动服的概率为_5(2014新课标全国卷)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_6(2013山东高考)某小组共有A,B,C,D,E五位同学,他们的身高(单位:米)及体重指标(单位:千克/米2)如下表所示:ABCDE身高1.691.731.751.791.82体重指标19.225.118.523.320.9(1)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率;(2)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在18.5,23.9)中的概率7(2014山东高考)海
3、关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示. 工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区ABC数量50150100(1)求这6件样品中来自A,B,C各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率8(2012湖南高考)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人)x3025y10结算时间(分钟/人)11.522
4、.53已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率(将频率视为概率)1(2013陕西高考)如图,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常)若在该矩形区域内随机地选一地点,则该地点无信号的概率是()A1B.1C2 D.2(2013湖南高考)已知事件“在矩形ABCD的边CD上随机取一点P,使APB的最大边是AB”发生的概率为,则()A. B.C. D.3(2014湖南高考
5、)在区间 2,3上随机选取一个数X ,则 X1的概率为()A. B.C. D.答 案命题点一1选C总的基本事件个数为36,向上的点数之和不超过5的有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1),共10个,则向上的点数之和不超过5的概率p1;向上的点数之和大于5的概率p21;向上的点数之和为偶数与向上的点数之和为奇数的个数相等,故向上的点数之和为偶数的概率p3.即p1p3p2,选C.2选B设正方形的四个顶点为A,B,C,D,中心为O,从这5个点中任取2个点,一共有10种不同的取法:AB,AC,AD,AO,BC,BD,BO,
6、CD,CO,DO,其中这2个点的距离小于该正方形边长的取法共有4种:AO,BO,CO,DO.因此由古典概型概率计算公式,可得所求概率P,故选B.3选B掷两颗骰子的所有基本事件为:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(
7、6,6),共36种,其中点数之和为5的基本事件为(1,4),(2,3),(3,2),(4,1),共4种,所以所求概率为.4解析:甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种的所有可能情况为(红,白),(白,红),(红,蓝),(蓝,红),(白,蓝),(蓝,白),(红,红),(白,白),(蓝,蓝),共9种,他们选择相同颜色运动服的所有可能情况为(红,红),(白,白),(蓝,蓝),共3种故所求概率为P.答案:5解析:设2本数学书分别为A,B,语文书为C,则所有的排放顺序有ABC,ACB,BAC,BCA,CAB,CBA,共6种情况,其中数学书相邻的有ABC,BAC,CAB,CBA
8、,共4种情况,故2本数学书相邻的概率P.答案:6解:(1)从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(B,C),(B,D),(C,D),共6个由于每个人被选到的机会均等,因此这些基本事件的出现是等可能的选到的2人身高都在1.78以下的事件有:(A,B),(A,C),(B,C),共3个因此选到的2人身高都在1.78以下的概率为P.(2)从该小组同学中任选2人,其一切可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),共10个由于每个人被选
9、到的机会均等,因此这些基本事件的出现是等可能的选到的2人身高都在1.70以上且体重指标都在18.5,23.9)中的事件有:(C,D)(C,E)(D,E),共3个因此选到的2人的身高都在1.70以上且体重指标都在18.5,23.9)中的概率为P.7解:(1)因为样本容量与总体中的个体数的比是,所以样本中包含三个地区的个体数量分别是:501,1503,1002.所以A,B,C三个地区的商品被选取的件数分别为1,3,2.(2)设6件来自A,B,C三个地区的样品分别为:A;B1,B2,B3;C1,C2.则抽取的这2件商品构成的所有基本事件为:A,B1,A,B2,A,B3,A,C1,A,C2,B1,B2
10、,B1,B3,B1,C1,B1,C2,B2,B3,B2,C1,B2,C2,B3,C1,B3,C2,C1,C2,共15个每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有B1,B2,B1,B3,B2,B3,C1,C2,共4个所以P(D),即这2件商品来自相同地区的概率为.8解:(1)由已知得25y1055,x3045,所以x15,y20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值
11、为1.9(分钟)(2)记A为事件“一位顾客一次购物的结算时间不超过2分钟”,A1,A2,A3分别表示事件“该顾客一次购物的结算时间为1分钟”,“该顾客一次购物的结算时间为1.5分钟”,“该顾客一次购物的结算时间为2分钟”将频率视为概率得P(A1),P(A2),P(A3).因为AA1A2A3,且A1,A2,A3是互斥事件,所以P(A)P(A1A2A3)P(A1)P(A2)P(A3).故一位顾客一次购物的结算时间不超过2分钟的概率为.命题点二1选A依题意,有信号的区域面积为2,矩形的面积为2,所求概率为P1.2.选D由已知,点P的分界点恰好是边CD的四等分点,由勾股定理可得AB22AD2,解得2,即.3选B区间2,3的长度为3(2)5,2,1的长度为1(2)3,故满足条件的概率p.