1、171一元二次方程1了解一元二次方程及相关概念;(重点)2能根据具体问题的数量关系,建立方程的模型(难点)一、情境导入一个面积为120m2的矩形苗圃,它的长比宽多2m,苗圃的长和宽各是多少?设苗圃的宽为xm,则长为(x2)m.根据题意,得x(x2)120.所列方程是否为一元一次方程?(这个方程便是即将学习的一元二次方程)二、合作探究探究点一:一元二次方程的概念【类型一】 一元二次方程的识别 下列方程中,是一元二次方程的是_(填入序号即可)y0;2x2x30;3;x223x;x3x40;t22;x23x0;2.解析:由一元二次方程的定义知不是答案为.方法总结:判断一个方程是不是一元二次方程,先看
2、它是不是整式方程,若是,再对它进行整理,若能整理为ax2bxc0(a,b,c为常数,a0)的形式,则这个方程就是一元二次方程【类型二】 根据一元二次方程的概念求字母的值 a为何值时,下列方程为一元二次方程?(1)ax2x2x2ax3;(2)(a1)x|a|12x70.解析:(1)将方程转化为一般形式,得(a2)x2(a1)x30,当a20,即a2时,原方程是一元二次方程;(2)由|a|12,且a10知,当a1时,原方程是一元二次方程解:(1)将方程整理得(a2)x2(a1)x30,a20,a2.当a2时,原方程为一元二次方程;(2)|a|12,a1.当a1时,a10,不合题意,舍去当a1时,原
3、方程为一元二次方程方法总结:用一元二次方程的定义求字母的值的方法:根据未知数的最高次数等于2,列出关于某个字母的方程,再排除使二次项系数等于0的字母的值【类型三】 一元二次方程的一般形式 把下列方程转化成一元二次方程的一般形式,并指出二次项系数、一次项系数和常数项(1)x(x2)4x23x;(2);(3)关于x的方程mx2nxmxnx2qp(mn0)解析:首先对上述三个方程进行整理,通过“去分母”“去括号”“移项”“合并同类项”等步骤将它们化为一般形式,再分别指出二次项系数、一次项系数和常数项解:(1)去括号,得x22x4x23x.移项、合并同类项,得3x2x0.二次项系数为3,一次项系数为1
4、,常数项为0;(2)去分母,得2x23(x1)3(x1)去括号、移项、合并同类项,得2x20.二次项系数为2,一次项系数为0,常数项为0;(3)移项、合并同类项,得(mn)x2(mn)xpq0.二次项系数为mn,一次项系数为mn,常数项为pq.方法总结:(1)在确定一元二次方程各项系数时,首先把一元二次方程转化成一般形式,如果在一般形式中二次项系数为负,那么最好在方程左右两边同乘1,使二次项系数变为正数;(2)指出一元二次方程的各项系数时,一定要带上前面的符号;(3)一元二次方程转化为一般形式后,若没有出现一次项bx,则b0;若没有出现常数项c,则c0.探究点二:根据实际问题建立一元二次方程模
5、型 如图,现有一张长为19cm,宽为15cm的长方形纸片,需要在四个顶角处剪去边长是多少的小正方形,才能将其做成底面积为81cm2的无盖长方体纸盒?请根据题意列出方程解析:小正方形的边长即为纸盒的高,中间虚线部分则为纸盒底面,设出未知数,利用长方形面积公式可列出方程解:设需要剪去的小正方形边长为xcm,则纸盒底面的长方形的长为(192x)cm,宽为(152x)cm.根据题意,得(192x)(152x)81.整理得x217x510(0x)方法总结:列方程最重要的是审题,只有理解题意,才能恰当地设出未知数,准确地找出已知量和未知量之间的等量关系,正确地列出方程在列出方程后,还应根据实际需求,注明自
6、变量的取值范围探究点三:一元二次方程的根 已知关于x的一元二次方程x2mx30的一个解是x1,求m的值解析:将方程的解代入原方程,可使方程的左右两边相等本题将x1代入原方程,可得关于m的一元一次方程,解得m的值即可解:根据方程的解的定义,将x1代入原方程,得12m130,解得m4,即m的值为4.方法总结:方程的根(解)一定满足原方程,将根(解)的值代入原方程,即可得到关于未知系数的方程,通过解方程可以求出未知系数的值,这种方法叫做根的定义法三、板书设计本节课通过实例让学生观察、归纳出一元二次方程的有关概念,并从中体会方程的模型思想学生对一元二次方程的一般形式比较容易理解,但是很容易忽视a0的时候该方程不是一元二次方程,需要在教学过程中加以强调。