ImageVerifierCode 换一换
格式:DOC , 页数:15 ,大小:1.25MB ,
资源ID:995077      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-995077-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(江苏省百校联考2022-2023学年高一上学期12月份阶段检测数学试卷 含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

江苏省百校联考2022-2023学年高一上学期12月份阶段检测数学试卷 含解析.doc

1、江苏省百校联考高一年级12月份阶段检测数学试卷第I卷(选择题共60分)一单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则( )A. B. C. D.2.使不等式成立的一个充分不必要条件可以为( )A. B.C. D.3.函数的单调递增区间是( )A. B.C. D.4.已知幂函数的图象经过点,则该幂函数的大致图象是( )A. B.C. D.5.世纪,在研究天文学的过程中,为了简化大数运算,苏格兰数学家纳皮尔发明了对数,对数的思想方法即把乘方和乘法运算分别转化为乘法和加法运算,数学家拉普拉斯称赞“对数的发明在实效上等于把天文学

2、家的寿命延长了许多倍”.已知,设,则所在的区间为( )A. B.C. D.6.设是满足的实数,那么( )A. B.C. D.7.黑洞原指非常奇怪的天体,它体积小密度大吸引力强,任何物体到了它那里都别想再出来,数字中也有类似的“黑洞”.任意取一个数字串,长度不限,依次写出该数字串中偶数的个数奇数的个数以及总的数字个数,把这三个数从左到右写成一个新的数字串.重复以上工作,最后会得到一个反复出现的数字串,我们称它为“数字黑洞”,如果把这个数字串设为,则( )A. B. C. D.8.设函数若关于的方程有四个实根,且,则的最小值为( )A. B.8 C. D.16二多项选择题:本大题共4小题,每小题5

3、分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列命题为真命题的是( )A.不论取何实数,命题“”为真命题B.不论取何实数,命题:“二次函数的图象关于轴对称”为真命题C.“四边形的对角线垂直且相等”是“四边形是正方形”的充分不必要条件D.“”是“”的既不充分也不必要条件10.一般地,对任意角,在平面直角坐标系中,设的终边上异于原点的任意一点的坐标为,它与原点的距离是.我们规定:比值分别叫作角的余切余割正割,分别记作,把分别叫作余切函数余割函数正割函数.下列叙述正确的有( )A.B.C.的定义域为D.11.下列说法正确的是(

4、)A.函数且的图象恒过定点B.若关于的不等式的解集为或,则C.函数的最小值为6D.若,则12.设,用表示不超过的最大整数,则称为高斯函数,也叫取整函数.令函数,以下结论正确的有( )A. B.为奇函数C. D.的值域为第II卷(非选择题共90分)三填空题:本大题共4小题,每小题5分,共20分.13.请写出能够说明“存在两个不相等的正数,使得”是真命题的一组有序数对:为_.(答案不唯一)14.已知,则_.15.对于函数,若,则称为的“不动点”,若,则称为的“稳定点”.若函数,则的“不动点”为_,将的“稳定点”的集合记为,即,则集合_.(本题第一问2分,第二问3分)16.已知正实数,则的最小值为_

5、.四解答题:本大题共6小题,共70分.解答时应写出文字说明证明过程或演算步.17.(10分)已知,且满足_.从;这三个条件中选择合适的一个,补充在上面的问题中,然后作答.(1)求的值;(2)若角的终边与角的终边关于轴对称,求的值.注:如果选择多个条件分别解答,按第一个解答计分.18.(12分)已知函数.(1)解关于的不等式;(2)若关于的不等式的解集为,求的最小值.19.(12分)在党和政府强有力的抗疫领导下,我国在控制住疫情后,一方面防止境外疫情输人,另一方面逐步复工复产,减少经济衰退对企业和民众带来的损失.为了进一步增强市场竞争力,某企业计划在2023年利用新技术生产某款手机.经过市场分析

6、,生产此款手机全年需投人固定成本250万,每生产(单位:千部)手机,需另投人可变成本万元,且由市场调研知,每部手机售价万元,且全年生产的手机当年能全部销售完.(利润=销售额一固定成本一可变成本)(1)求2023年的利润(单位:万元)关于年产量(单位:千部)的函数关系式.(2)2023年的年产量为多少(单位:千部)时,企业所获利润最大?最大利润是多少?20.(12分)已知函数对一切实数,都有成立,且,函数.(1)求的解析式;(2)若,求的取值范围.21.(12分)已知是二次函数,且满足.(1)求的解析式.(2)已知函数满足以下两个条件:的图象恒在图象的下方;对任意恒成立.求的最大值.22.(12

7、分)已知函数.(1)若方程有4个不相等的实数根.求证:.(2)是否存在实数,使得在区间上单调,且的取值范围为?若存在,求出的取值范围;若不存在,请说明理由.江苏省百校联考高-年级12月份阶段检测数学试卷参考答案1.C 由,可得,所以,由,可得,所以,所以是的真子集,所以.2.D 不等式可化为解集为.因为,所以使不等式成立的一个充分不必要条件可以为.3.C 由,得的定义域为.令,则在上单调递减,而当时,为增函数,当时,为减函数,故的单调递增区间是.4.D 设幂函数的解析式为,因为该幂函数的图象经过点,所以,即,解得,即函数,也即,则函数的定义域为为偶函数,且在上为减函数.5.C 因为.6644,

8、所以.6.B 对于,满足,则,故A不正确.对于B,因为,所以,所以,所以,所以B正确.对于C,满足,则,此时,故C不正确.对于,满足,则,此时,故不正确.7.A 根据“数字黑洞”的定义,任取数字2021,经过第一步之后为314,经过第二步之后为123,再变为123,再变为123,所以“数字黑洞”为123,即,则.8.B 作出的大致图象,如图所示.,其中.因为,即,其中,所以,当且仅当时,等号成立,此时.又因为,当且仅当时,等号成立,此时,所以的最小值是8.9.ABD 对于,关于的一元二次方程有不等实根,显然,即,因此不等式的解集为,当时,正确.对于,二次函数图象的对称轴为轴,因此二次函数的图象

9、关于轴对称,B正确.对于,对角线垂直且相等的四边形不一定是正方形,反之成立.故错误.对于,令,则,令,则,而,故也不成立,D正确.10.ACD 对于,故A正确;对于,故B错误;对于C,其定义域为,故C正确;对于D,当时,等号成立,故D正确.11.BD 对于A,函数且的图象恒过定点,故错误.对于,关于的不等式的解集为或,故必有解得进而得到,故B正确.对于,方程无解,等号不成立,故C错误.对于,所以,故D正确.12.AC 对于,故正确.对于,取.1,则,而,故,所以不为奇函数,故B错误.对于,故C正确.对于,由可知,为周期函数,且周期为1,当时,当时,当时,;当时,则的值域为,故D错误.13.()

10、(答案不唯一) 当时,满足,故这样的有序实数对可以是().14. 由诱导公式,所以.15. (1)令,得或.(2)由,且,得,即,也即,解得.16. ,当且仅当时,等号成立.17.解:(1)若选择.因为,所以,则.若选择.因为,所以,即,则,所以.若选择.因为,所以,又,所以.又因为,所以,所以.(2)角与角均以轴的正半轴为始边,它们的终边关于轴对称,则,即,所以.由(1)得,所以.18.解:(1)因为,所以,即.当时,不等式的解集为.当时,不等式的解集为.当时,不等式的解集为.(2)由题意,关于的方程有两个不等的正根,由韦达定理知解得.则,因为,所以,当且仅当,且,即时,等号成立,此时,符合

11、条件,则.综上,当且仅当时,取得最小值36.19.解:(1).当时,;当时,.故(2)若,当时,.若,当且仅当时,等号成立.当时,故2023年的年产量为90千部时,企业所获利润最大,最大利润是8070万元.20.解:(1)令,则由已知得,所以,则,经检验,符合题意.(注:不检验不扣分)(2)当时,.当时,设,因为,所以,当且仅当时,等号成立,所以.综上,的值域为.令,记的值域为,则.,得,所以解得.故的取值范围为.21.解:(1)设,由,得.由,得,整理得,所以解得所以.(2)由题可得,令,则,故.对任意,即恒成立,则,所以,此时.,当且仅当时,等号成立,此时成立,所以的最大值为.22.(1)

12、证明:令,方程有4个不相等的实数根,即有4个不相等的实数根,其中,即,所以,即或,因为方程有4个不相等的实根,所以由根与系数的关系得,所以,得.(2)解:如图,可知在上单调递减,在上单调递增,在上单调递减,在上单调递增.当时,在上单调递减,则化简得,因为,所以上式不成立,即无解,所以不存在.当时,在上单调递增,则所以关于的方程,即在内有两个不等的实根.令,则,结合图象可知,.当时,在上单调递减,则,化简得,所以,即.由即关于的方程在内有两个不等的实根,也即在内有两个不等的实根,所以,即.当时,在上单调递增,则关于的方程,即在内有两个不等的实根.令,则,函数在上单调递增,没有两解,不符合题意.综上所述,的取值范围为.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3