ImageVerifierCode 换一换
格式:PPT , 页数:21 ,大小:779.50KB ,
资源ID:992794      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-992794-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2014年《南方新课堂·高考总复习》理科数学(新课标)一轮复习课件:第十二章《圆锥曲线》 第3讲 抛物线.ppt)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

2014年《南方新课堂·高考总复习》理科数学(新课标)一轮复习课件:第十二章《圆锥曲线》 第3讲 抛物线.ppt

1、考纲要求考纲研读1.了解抛物线的定义、几何图形、标准方程,知道它的简单几何性质2理解数形结合的思想.1.能利用定义法或待定系数法求抛物线的方程2利用抛物线的定义将抛物线上的点到准线的距离和到焦点的距离进行转化3综合应用抛物线和直线的有关知识,通过直线与抛物线的位置关系解答相应问题.第3讲 抛物线1抛物线的定义平面上到定点的距离与到定直线 l(定点不在直线 l 上)的距离_的点的轨迹叫做抛物线,定点为抛物线的_,定直线为抛物线的_相等焦点准线2抛物线的标准方程、类型及其几何性质(p0)1抛物线 y4x2 的准线方程是()D2(2011 年深圳高级中学第二次考试)抛物线 yx2 的焦点坐标为()D

2、3经过点(3,2)的抛物线标准方程为_;对应的准线方程为_.4在平面直角坐标系 xOy 中,若抛物线 y24x 上的点 P 到该抛物线的焦点的距离为 6,则点 P 的横坐标_.54考点1抛物线的标准方程例 1:已知抛物线焦点在 x 轴上,其上一点 P(3,m)到焦点距离为 5,则抛物线标准方程为()BAy28xBy28x Cy24xDy24x焦点在直线 x2y40 上的抛物线标准方程为_对应的准线方程为_x4(或y2)y216x(或x28y)第(1)利用抛物线的定义直接得出 p 的值可以减少运算;第(2)题易犯的错误就是缺少对开口方向的讨论,先入为主,设定一种形式的标准方程后求解,以致失去一解

3、【互动探究】1(2011 年广东)设圆 C 与圆 x2(y3)21 外切,与直线 y0 相切,则 C 的圆心轨迹为()AA抛物线C椭圆B双曲线D圆解析:依题意得,C 的圆心到点(0,3)的距离与它到直线y1 的距离相等,则 C 的圆心轨迹为抛物线考点2 抛物线的几何性质例2:如图 1231,已知抛物线 y22x 的焦点是 F,点 P是抛物线上的动点,又有点 A(3,2),求|PA|PF|的最小值,并求出取最小值时 P 点的坐标解题思路:由抛物线的定义知,点 P 到准线的距离等于点 P 到焦点的距离又因为点 P 在抛物线内部,所以当 PA 垂直准线时,交点P 即为所求点图1231与抛物线有关的最

4、值问题,一般情况下都与抛物线的定义有关,注意灵活应用【互动探究】2(2011 年山东)设 M(x0,y0)为抛物线Cx28y上一点,F为抛物线 C 的焦点,以 F 为圆心、|FM|为半径的圆和抛物线 C 的准线相交,则 y0 的取值范围是()CA(0,2)C(2,)B0,2D2,)解析:根据x28y,所以F(0,2),准线y2.所以F到准线的距离为4.当以F为圆心、以|FM|为半径的圆与准线相切时,|MF|4,即M到准线的距离为4,此时y02.所以显然当以F为圆心,以|FM|为半径的圆和抛物线C的准线相交时,y0(2,)3已知点 P 在抛物线 y24x 上,那么点 P 到点 Q(2,1)的距离

5、与点 P 到抛物线焦点距离之和取得最小值时,点 P 的坐标为()A考点3直线与抛物线的位置关系本题主要考查直线与抛物线的位置关系,涉及的点很多,涉及的字母也很多(k,x1,y1,x2,y2,),但必须将直线的方程和点的坐标设出来,这是解题的前提注意设而不求的思想及韦达定理的应用【互动探究】4(2011 年全国)已知直线l过抛物线 C 的焦点,且 l 与 C 的对称轴垂直,l 与 C 交于 A,B 两点,|AB|12,P 为 C 的准线上一点,则ABP 的面积为()CA18B24C36D48思想与方法17利用运动变化的思想探求抛物线中的不变问题例题:AB为过抛物线焦点的动弦,P为AB的中点,A,

6、B,P在准线L的射影分别是A1,B1,P1:以下结论中:FA1FB1;AP1BP1;BP1FB1;AP1FA1.正确的个数为()A1 B2 C3 D4解析:如图1232(1),AA1AF,AA1FAFA1,又AA1F1F,AA1FA1FF1,则AFA1A1FF1,同理BFB1B1FF1,则A1F B190,故FA1FB1;即AP1B为直角三角形,故AP1BP1;如图1232(3),BB1BF,即BB1F为等腰三角形,PP1PB,PP1BPBP1,又BB1P1P,PP1BB1BP1,则PBP1B1BP1,即BP1为角平分线,故BP1FB1;如图1232(4),同有A P1FA1.综上所述,都正确,故选D.图1232答案:D1对于抛物线的标准方程有四种形式,重点把握好两点:(1)“p”是焦点到准线的距离,恒为正数;(2)要搞清方程与图形的对应性,其规律是“对称轴看一次项,符号决定开口方向”2抛物线的焦半径、焦点弦过焦点的所有弦中最短的弦,也被称做通径其长度为 2p;1对抛物线的标准方程要准确把握,注意和二次函数的形式求抛物线的方程时,要注意对称轴和抛物线开口方向,防止设错抛物线的标准方程2直线与抛物线只有一个交点并不表明直线与抛物线相切,因为直线与对称轴平行时,直线与抛物线只有一个交点,但该种关系显然不是相切因此通过方程判断直线与抛物线的位置关系时,要注意这种特殊情形

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1