ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:369.50KB ,
资源ID:992513      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-992513-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2015年高考数学第一轮大复习素材: 3.1导数的概念及运算(新人教A版)文.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2015年高考数学第一轮大复习素材: 3.1导数的概念及运算(新人教A版)文.doc

1、3.1导数的概念及运算1函数yf(x)从x1到x2的平均变化率函数yf(x)从x1到x2的平均变化率为,若xx2x1,yf(x2)f(x1),则平均变化率可表示为.2函数yf(x)在xx0处的导数(1)定义称函数yf(x)在xx0处的瞬时变化率 为函数yf(x)在xx0处的导数,记作f(x0)或y|xx0,即f(x0) .(2)几何意义函数f(x)在点x0处的导数f(x0)的几何意义是在曲线yf(x)上点(x0,f(x0)处的切线的斜率相应地,切线方程为yf(x0)f(x0)(xx0)3函数f(x)的导函数称函数f(x) 为f(x)的导函数,导函数有时也记作y.4基本初等函数的导数公式原函数导

2、函数f(x)c (c为常数)f(x)_0_f(x)x (Q*)f(x)x1f(x)sin xf(x)cos_xf(x)cos xf(x)sin_xf(x)ax (a0)f(x)axln_af(x)exf(x)exf(x)logax (a0,且a1)f(x)f(x)ln xf(x)5导数的运算法则(1)f(x)g(x)f(x)g(x);(2)f(x)g(x)f(x)g(x)f(x)g(x);(3) (g(x)0)1判断下面结论是否正确(请在括号中打“”或“”)(1)f(x0)与(f(x0)表示的意义相同()(2)求f(x0)时,可先求f(x0)再求f(x0)()(3)曲线的切线不一定与曲线只有一

3、个公共点()(4)与曲线只有一个公共点的直线一定是曲线的切线()(5)若f(x)a32axx2,则f(x)3a22x.()(6)函数f(x)x2ln x的导函数为f(x)2x2.()2(2013江西)设函数f(x)在(0,)内可导,且f(ex)xex,则f(1)_.答案2解析设ext,则xln t(t0),f(t)ln ttf(t)1,f(1)2.3已知曲线yx3在点(a,b)处的切线与直线x3y10垂直,则a的值是 ()A1 B1 C1 D3答案B解析由yx3知y3x2,切线斜率ky|xa3a2.又切线与直线x3y10垂直,3a2()1,即a21,a1,故选B.4如图所示为函数yf(x),y

4、g(x)的导函数的图象,那么yf(x),yg(x)的图象可能是()答案D解析由yf(x)的图象知yf(x)在(0,)上单调递减,说明函数yf(x)的切线的斜率在(0,)上也单调递减,故可排除A,C.又由图象知yf(x)与yg(x)的图象在xx0处相交,说明yf(x)与yg(x)的图象在xx0处的切线的斜率相同,故可排除B.故选D.5已知点P在曲线y上,为曲线在点P处的切线的倾斜角,则的取值范围是_答案,)解析y,y.ex0,ex2,y1,0),tan 1,0)又0,),)题型一利用定义求函数的导数例1利用导数的定义求函数f(x)x3在xx0处的导数,并求曲线f(x)x3在xx0处的切线与曲线f

5、(x)x3的交点思维启迪掌握导数的定义,理解导数的几何意义是解决本题的关键解f(x0) (x2xx0x)3x.曲线f(x)x3在xx0处的切线方程为yx3x(xx0),即y3xx2x,由得(xx0)2(x2x0)0,解得xx0,x2x0.若x00,则交点坐标为(x0,x),(2x0,8x);若x00,则交点坐标为(0,0)思维升华求函数f(x)的导数步骤:(1)求函数值的增量yf(x2)f(x1);(2)计算平均变化率;(3)计算导数f(x) .(1)函数yx在x,xx上的平均变化率_;该函数在x1处的导数是_(2)若函数yf(x)在区间(a,b)内可导,且x0(a,b),则 的值为()Af(

6、x0) B2f(x0)C2f(x0) D0答案(1)10(2)B解析(1)y(xx)xxx.1.y|x1 0.(2) 2 2f(x0)题型二导数的运算例2求下列函数的导数:(1)yexln x;(2)yx;思维启迪求函数的导数,首先要搞清函数的结构;若式子能化简,可先化简再求导解(1)y(exln x)exln xexex(ln x)(2)yx31,y3x2.思维升华(1)求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;(2)有的函数虽然表面形式为函数的商的形式,但在求导前利用代数或三角恒等变形将函数先化简,然后进行求导,有时可以避免

7、使用商的求导法则,减少运算量;求下列函数的导数(1)y(x1)(x2)(x3);(2)ysin (12cos2);解(1)方法一y(x23x2)(x3)x36x211x6,y3x212x11.方法二y(x1)(x2)(x3)(x1)(x2)(x3)(x1)(x2)(x1)(x2)(x3)(x1)(x2)(x2x1)(x3)(x1)(x2)(2x3)(x3)(x1)(x2)3x212x11.(2)ysin (cos )sin x,y(sin x)(sin x)cos x.题型三导数的几何意义例3已知函数f(x)x34x25x4.(1)求曲线f(x)在点(2,f(2)处的切线方程;(2)求经过点A

8、(2,2)的曲线f(x)的切线方程思维启迪由导数的几何意义先求斜率,再求方程,注意点是否在曲线上,是否为切点解(1)f(x)3x28x5,f(2)1,又f(2)2,曲线f(x)在点(2,f(2)处的切线方程为y(2)x2,即xy40.(2)设切点坐标为(x0,x4x5x04),f(x0)3x8x05,切线方程为y(2)(3x8x05)(x2),又切线过点(x0,x4x5x04),x4x5x02(3x8x05)(x02),整理得(x02)2(x01)0,解得x02或x01,经过A(2,2)的曲线f(x)的切线方程为xy40,或y20.思维升华导数几何意义的应用,需注意以下两点:(1)当曲线yf(

9、x)在点(x0,f(x0)处的切线垂直于x轴时,函数在该点处的导数不存在,切线方程是xx0;(2)注意区分曲线在某点处的切线和曲线过某点的切线曲线yf(x)在点P(x0,f(x0)处的切线方程是yf(x0)f(x0)(xx0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解已知抛物线yax2bxc通过点P(1,1),且在点Q(2,1)处与直线yx3相切,求实数a、b、c的值解y2axb,抛物线在点Q(2,1)处的切线斜率为ky|x24ab.4ab1.又点P(1,1)、Q(2,1)在抛物线上,abc1,4a2bc1.联立解方程组,得实数a、b、c的值分别为3、11、9.一审条件挖

10、隐含典例:(12分)设函数yx22x2的图象为C1,函数yx2axb的图象为C2,已知过C1与C2的一个交点的两切线互相垂直(1)求a,b之间的关系;(2)求ab的最大值审题路线图C1与C2有交点(可设C1与C2的交点为(x0,y0)过交点的两切线互相垂直(切线垂直隐含着斜率间的关系)两切线的斜率互为负倒数利用导数求两切线的斜率:k12x02,k22x0a(2x02)(2x0a)1(交点(x0,y0)适合解析式),即2x(a2)x02b0ababa2当a时,ab最大且最大值为.规范解答解(1)对于C1:yx22x2,有y2x2,1分对于C2:yx2axb,有y2xa,2分设C1与C2的一个交点

11、为(x0,y0),由题意知过交点(x0,y0)的两切线互相垂直(2x02)(2x0a)1,即4x2(a2)x02a10又点(x0,y0)在C1与C2上,故有2x(a2)x02b0由消去x0,可得ab.6分(2)由(1)知:ba,aba2.9分当a时,(ab)最大值.12分温馨提醒审题包括两方面内容:题目信息的挖掘、整合以及解题方法的选择;本题切入点是两条曲线有交点P(x0,y0),交点处的切线互相垂直,通过审题路线可以清晰看到审题的思维过程.方法与技巧1f(x0)代表函数f(x)在xx0处的导数值;(f(x0)是函数值f(x0)的导数,而函数值f(x0)是一个常量,其导数一定为0,即(f(x0

12、)0.2对于函数求导,一般要遵循先化简再求导的基本原则求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误失误与防范1利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆 2求曲线切线时,要分清在点P处的切线与过P点的切线的区别,前者只有一条,而后者包括了前者3曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别.A组专项基础训练(时间:35分钟,满分:57分)一、选择题1设f(x)xln x,若f(x0)2,则x0的值为()Ae2 Be C. Dln 2答案B解析由f(x)x

13、ln x得f(x)ln x1.根据题意知ln x012,所以ln x01,因此x0e.2若函数f(x)ax4bx2c满足f(1)2,则f(1)等于()A1 B2 C2 D0答案B解析f(x)4ax32bx,f(x)为奇函数且f(1)2,f(1)2.3若曲线yx4的一条切线l与直线x4y80垂直,则l的方程为()A4xy30 Bx4y50C4xy30 Dx4y30答案A解析切线l的斜率k4,设yx4的切点的坐标为(x0,y0),则k4x4,x01,切点为(1,1),即y14(x1),整理得l的方程为4xy30.4曲线yx3在点(1,1)处的切线与x轴及直线x1所围成的三角形的面积为()A. B.

14、 C. D.答案B解析求导得y3x2,所以y3x2|x13,所以曲线yx3在点(1,1)处的切线方程为y13(x1),结合图象易知所围成的三角形是直角三角形,三个交点的坐标分别是(,0),(1,0),(1,1),于是三角形的面积为(1)1,故选B.5已知f1(x)sin xcos x,fn1(x)是fn(x)的导函数,即f2(x)f1(x),f3(x)f2(x),fn1(x)fn(x),nN*,则f2 015(x)等于()Asin xcos x Bsin xcos xCsin xcos x Dsin xcos x答案A解析f1(x)sin xcos x,f2(x)f1(x)cos xsin x

15、,f3(x)f2(x)sin xcos x,f4(x)f3(x)cos xsin x,f5(x)f4(x)sin xcos x,fn(x)是以4为周期的函数,f2 015(x)f3(x)sin xcos x,故选A.二、填空题6已知函数f(x)的导函数为f(x),且满足f(x)3x22xf(2),则f(5)_.答案6解析对f(x)3x22xf(2)求导,得f(x)6x2f(2)令x2,得f(2)12.再令x5,得f(5)652f(2)6.7已知函数yf(x)及其导函数yf(x)的图象如图所示,则曲线yf(x)在点P处的切线方程是_答案xy20解析根据导数的几何意义及图象可知,曲线yf(x)在点

16、P处的切线的斜率kf(2)1,又过点P(2,0),所以切线方程为xy20.8若函数f(x)x2axln x存在垂直于y轴的切线,则实数a的取值范围是_答案2,)解析f(x)x2axln x,f(x)xa.f(x)存在垂直于y轴的切线,f(x)存在零点,xa0,ax2.三、解答题9求下列函数的导数(1)yxnlg x;(2)y;(3)y;解(1)ynxn1lg xxnxn1(nlg x)(2)y()()()(x1)(2x2)(x3)x24x33x4.(3)y().10已知曲线yx3.(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程解(1)P(2,4)在曲线yx3上

17、,且yx2,在点P(2,4)处的切线的斜率为y|x24.曲线在点P(2,4)处的切线方程为y44(x2),即4xy40.(2)设曲线yx3与过点P(2,4)的切线相切于点A,则切线的斜率为y|xx0x.切线方程为yx(xx0),即yxxx.点P(2,4)在切线上,42xx,即x3x40,xx4x40,x(x01)4(x01)(x01)0,(x01)(x02)20,解得x01或x02,故所求的切线方程为xy20或4xy40.B组专项能力提升(时间:25分钟,满分:43分)1在函数yx39x的图象上,满足在该点处的切线的倾斜角小于,且横、纵坐标都为整数的点的个数是()A0 B1 C2 D3答案A解

18、析依题意得,y3x29,令0y1得3x20,b0.又f(x)2xb,斜率为正,纵截距为负,故选A.3已知曲线C:f(x)x3axa,若过曲线C外一点A(1,0)引曲线C的两条切线,它们的倾斜角互补,则a的值为_答案解析设切点坐标为(t,t3ata)由题意知,f(x)3x2a,切线的斜率为ky|xt3t2a,所以切线方程为y(t3ata)(3t2a)(xt)将点(1,0)代入式得,(t3ata)(3t2a)(1t),解之得,t0或t.分别将t0和t代入式,得ka和ka,由题意得它们互为相反数得a.4设函数f(x)ax,曲线yf(x)在点(2,f(2)处的切线方程为7x4y120.(1)求f(x)

19、的解析式;(2)曲线f(x)上任一点处的切线与直线x0和直线yx所围成的三角形面积为定值,并求此定值解(1)方程7x4y120可化为yx3.当x2时,y.又f(x)a,于是解得故f(x)x.(2)设P(x0,y0)为曲线上任一点,由y1知曲线在点P(x0,y0)处的切线方程为yy0(xx0),即y(xx0)令x0,得y,从而得切线与直线x0的交点坐标为.令yx,得yx2x0,从而得切线与直线yx的交点坐标为(2x0,2x0)所以点P(x0,y0)处的切线与直线x0,yx所围成的三角形的面积为S|2x0|6.故曲线yf(x)上任一点处的切线与直线x0,yx所围成的三角形面积为定值,且此定值为6.5设有抛物线C:yx2x4,过原点O作C的切线ykx,使切点P在第一象限(1)求k的值;(2)过点P作切线的垂线,求它与抛物线的另一个交点Q的坐标解(1)设点P的坐标为(x1,y1),则y1kx1,y1xx14,代入得x(k)x140.P为切点,(k)2160得k或k.当k时,x12,y117.当k时,x12,y11.P在第一象限,所求的斜率k.(2)过P点作切线的垂线,其方程为y2x5.将代入抛物线方程得x2x90.设Q点的坐标为(x2,y2),即2x29,x2,y24.Q点的坐标为(,4)

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3